Beyond Diabetes: Semaglutide's Role in Modulating Mood Disorders through Neuroinflammation Pathways

Abedi S, Vessal M, Asadian F, Takhshid MA (2021) Association of serum kynurenine/tryptophan ratio with poor glycemic control in patients with type2 diabetes. J Diabetes Metab Disord 20(2):1521–1527. https://doi.org/10.1007/s40200-021-00895-z

Article  PubMed  PubMed Central  CAS  Google Scholar 

Anderberg RH, Richard JE, Hansson C, Nissbrandt H, Bergquist F, Skibicka KP (2016) GLP-1 is both anxiogenic and antidepressant; divergent effects of acute and chronic GLP-1 on emotionality. Psychoneuroendocrinology 65:54–66. https://doi.org/10.1016/j.psyneuen.2015.11.021

Article  PubMed  CAS  Google Scholar 

Ara I, Bano S (2012) Citalopram decreases tryptophan 2,3-dioxygenase activity and brain 5-HT turnover in swim stressed rats. Pharmacol Rep 64(3):558–566. https://doi.org/10.1016/s1734-1140(12)70851-4

Article  PubMed  CAS  Google Scholar 

Ayala-Guerrero L, García-delaTorre P, Sánchez-García S, Guzmán-Ramos K (2022) Serum levels of glial fibrillary acidic protein association with cognitive impairment and type 2 diabetes. Arch Med Res 53(5):501–507. https://doi.org/10.1016/j.arcmed.2022.06.001

Article  PubMed  CAS  Google Scholar 

Bădescu SV, Tătaru C, Kobylinska L, Georgescu EL, Zahiu DM, Zăgrean AM, Zăgrean L (2016) The association between diabetes mellitus and depression. J Med Life 9(2):120–125

PubMed  PubMed Central  Google Scholar 

Barbagallo M, Dominguez LJ (2015) Magnesium and type 2 diabetes. World World J Diabetes 6(10):1152–1157. https://doi.org/10.4239/wjd.v6.i10.1152

Article  PubMed  Google Scholar 

Batista AF, Bodart-Santos V, De Felice FG, Ferreira ST (2019) Neuroprotective actions of glucagon-like peptide-1 (GLP-1) analogues in Alzheimer’s and Parkinson’s diseases. CNS Drugs 33(3):209–223. https://doi.org/10.1007/s40263-018-0593-6

Article  PubMed  Google Scholar 

Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1006/abio.1976.9999

Article  PubMed  CAS  Google Scholar 

Butler MI, Long-Smith C, Moloney GM, Morkl S, O’Mahony SM, Cryan JF, Clarke G, Dinan TG (2022) The immune-kynurenine pathway in social anxiety disorder. Brain Behav Immun 99:317–326. https://doi.org/10.1016/j.bbi.2021.10.020

Article  PubMed  CAS  Google Scholar 

Chen MH, Liu YL, Kuo HW, Tsai SJ, Hsu JW, Huang KL, Tu PC, Bai YM (2022) Neurofilament light chain is a novel biomarker for major depression and related executive dysfunction. Int J Neuropsychopharmacol 25(2):99–105. https://doi.org/10.1093/ijnp/pyab068

Article  PubMed  CAS  Google Scholar 

Chmiel-Perzyńska I, Perzyński A, Wielosz M, Urbańska EM (2007) Hyperglycemia enhances the inhibitory effect of mitochondrial toxins and D,L-homocysteine on the brain production of kynurenic acid. Pharmacol Rep 59(3):268–273

PubMed  Google Scholar 

Chmiel-Perzyńska I, Perzyński A, Urbańska EM (2014) Experimental diabetes mellitus type 1 increases hippocampal content of kynurenic acid in rats. Pharmacol Rep 66(6):1134–1139. https://doi.org/10.1016/j.pharep.2014.07.014

Article  PubMed  CAS  Google Scholar 

Cobb JA, O’Neill K, Milner J, Mahajan GJ, Lawrence TJ, May WL, Miguel-Hidalgo J, Rajkowska G, Stockmeier CA (2016) Density of GFAP-immunoreactive astrocytes is decreased in left hippocampi in major depressive disorder. Neuroscience 316:209–220. https://doi.org/10.1016/j.neuroscience.2015.12.044

Article  PubMed  CAS  Google Scholar 

da Silva Dias IC, Carabelli B, Ishii DK, de Morais H, de Carvalho MC, Rizzo de Souza LE, Zanata SM, Brandão ML, Cunha TM, Ferraz AC, Cunha JM, Zanoveli JM (2016) Indoleamine-2,3-dioxygenase/kynurenine pathway as a potential pharmacological target to treat depression associated with diabetes. Mol Neurobiol 53(10):6997–7009. https://doi.org/10.1007/s12035-015-9617-0

Article  PubMed  CAS  Google Scholar 

Detka J, Kurek A, Kucharczyk M, Głombik K, Basta-Kaim A, Kubera M, Lasoń W, Budziszewska B (2015) Brain glucose metabolism in an animal model of depression. Neuroscience 295:198–208. https://doi.org/10.1016/j.neuroscience.2015.03.046

Article  PubMed  CAS  Google Scholar 

Duarte AI, Candeias E, Alves IN, Mena D, Silva DF, Machado NJ, Campos EJ, Santos MS, Oliveira CR, Moreira PI (2020) Liraglutide protects against brain amyloid-β1-42 accumulation in female mice with early Alzheimer’s disease-like pathology by partially rescuing oxidative/nitrosative stress and inflammation. Int J Mol Sci 21(5):1746. https://doi.org/10.3390/ijms21051746

Article  PubMed  PubMed Central  CAS  Google Scholar 

Dudek KA, Dion-Albert L, Lebel M, LeClair K, Labrecque S, Tuck E, Ferrer Perez C, Golden SA, Tamminga C, Turecki G, Mechawar N, Russo SJ, Menard C (2020) Molecular adaptations of the blood-brain barrier promote stress resilience vs. depression. Proc Natl Acad Sci USA 117(6):3326–3336. https://doi.org/10.1073/pnas.1914655117

Article  PubMed  PubMed Central  CAS  Google Scholar 

Dziewa M, Bańka B, Herbet M, Piątkowska-Chmiel I (2023) Eating disorders and diabetes: facing the dual challenge. Nutrients 15(18):3955. https://doi.org/10.3390/nu15183955

Article  PubMed  PubMed Central  Google Scholar 

Franklin M, Bermudez I, Murck H, Singewald N, Gaburro S (2012) Sub-chronic dietary tryptophan depletion–an animal model of depression with improved face and good construct validity. J Psychiatr Res 46(2):239–247. https://doi.org/10.1016/j.jpsychires.2011.10.003

Article  PubMed  CAS  Google Scholar 

García-Revilla J, Boza-Serrano A, Espinosa-Oliva AM, Soto MS, Deierborg T, Ruiz R, de Pablos RM, Burguillos MA, Venero JL (2022) Galectin-3, a rising star in modulating microglia activation under conditions of neurodegeneration. Cell Death Dis 13(7):628. https://doi.org/10.1038/s41419-022-05058-3

Article  PubMed  PubMed Central  CAS  Google Scholar 

Gil-Lozano M, Pérez-Tilve D, Alvarez-Crespo M, Martís A, Fernandez AM, Catalina PA, Gonzalez-Matias LC, Mallo F (2010) GLP-1(7–36)-amide and Exendin-4 stimulate the HPA axis in rodents and humans. Endocrinology 151(6):2629–2640. https://doi.org/10.1210/en.2009-0915

Article  PubMed  CAS  Google Scholar 

Głombik K, Detka J, Kurek A, Budziszewska B (2020) Impaired brain energy metabolism: involvement in depression and hypothyroidism. Front Neurosci 14:586939. https://doi.org/10.3389/fnins.2020.586939

Article  PubMed  PubMed Central  Google Scholar 

Gold PW, Goodwin FK, Chrousos GP (1988) Clinical and biochemical manifestations of depression. Relation to the neurobiology of stress (1). N Engl J Med 319(6):348–353. https://doi.org/10.1056/NEJM198808113190606

Article  PubMed  CAS  Google Scholar 

Hall C. S., Ballachey E. L., 1932. A study of the rat’s behavior in a field. A contribution to method in comparative psychology, vol 6. University of California Publications in Psychology, Berkeley, pp 1–12

Haque A, Polcyn R, Matzelle D, Banik NL (2018) New insights into the role of neuron-specific enolase in neuro-inflammation, neurodegeneration, and neuroprotection. Brain Sci 8(2):33. https://doi.org/10.3390/brainsci8020033

Article  PubMed  PubMed Central  CAS  Google Scholar 

Hestad K, Alexander J, Rootwelt H, Aaseth JO (2022) The role of tryptophan dysmetabolism and quinolinic acid in depressive and neurodegenerative diseases. Biomolecules 12(7):998. https://doi.org/10.3390/biom12070998

Article  PubMed  PubMed Central  CAS  Google Scholar 

Katsurada K, Yada T (2016) Neural effects of gut- and brain-derived glucagon-like peptide-1 and its receptor agonist. J Diabetes Investig 7(Suppl 1):64–69. https://doi.org/10.1111/jdi.12464

Article  PubMed  PubMed Central  CAS  Google Scholar 

Kegel ME, Bhat M, Skogh E, Samuelsson M, Lundberg K, Dahl ML, Sellgren C, Schwieler L, Engberg G, Schuppe-Koistinen I, Erhardt S (2014) Imbalanced kynurenine pathway in schizophrenia. Int J Tryptophan Res 7:15–22. https://doi.org/10.4137/IJTR.S16800

Article  PubMed 

Comments (0)

No login
gif