Abedi S, Vessal M, Asadian F, Takhshid MA (2021) Association of serum kynurenine/tryptophan ratio with poor glycemic control in patients with type2 diabetes. J Diabetes Metab Disord 20(2):1521–1527. https://doi.org/10.1007/s40200-021-00895-z
Article PubMed PubMed Central CAS Google Scholar
Anderberg RH, Richard JE, Hansson C, Nissbrandt H, Bergquist F, Skibicka KP (2016) GLP-1 is both anxiogenic and antidepressant; divergent effects of acute and chronic GLP-1 on emotionality. Psychoneuroendocrinology 65:54–66. https://doi.org/10.1016/j.psyneuen.2015.11.021
Article PubMed CAS Google Scholar
Ara I, Bano S (2012) Citalopram decreases tryptophan 2,3-dioxygenase activity and brain 5-HT turnover in swim stressed rats. Pharmacol Rep 64(3):558–566. https://doi.org/10.1016/s1734-1140(12)70851-4
Article PubMed CAS Google Scholar
Ayala-Guerrero L, García-delaTorre P, Sánchez-García S, Guzmán-Ramos K (2022) Serum levels of glial fibrillary acidic protein association with cognitive impairment and type 2 diabetes. Arch Med Res 53(5):501–507. https://doi.org/10.1016/j.arcmed.2022.06.001
Article PubMed CAS Google Scholar
Bădescu SV, Tătaru C, Kobylinska L, Georgescu EL, Zahiu DM, Zăgrean AM, Zăgrean L (2016) The association between diabetes mellitus and depression. J Med Life 9(2):120–125
PubMed PubMed Central Google Scholar
Barbagallo M, Dominguez LJ (2015) Magnesium and type 2 diabetes. World World J Diabetes 6(10):1152–1157. https://doi.org/10.4239/wjd.v6.i10.1152
Batista AF, Bodart-Santos V, De Felice FG, Ferreira ST (2019) Neuroprotective actions of glucagon-like peptide-1 (GLP-1) analogues in Alzheimer’s and Parkinson’s diseases. CNS Drugs 33(3):209–223. https://doi.org/10.1007/s40263-018-0593-6
Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1006/abio.1976.9999
Article PubMed CAS Google Scholar
Butler MI, Long-Smith C, Moloney GM, Morkl S, O’Mahony SM, Cryan JF, Clarke G, Dinan TG (2022) The immune-kynurenine pathway in social anxiety disorder. Brain Behav Immun 99:317–326. https://doi.org/10.1016/j.bbi.2021.10.020
Article PubMed CAS Google Scholar
Chen MH, Liu YL, Kuo HW, Tsai SJ, Hsu JW, Huang KL, Tu PC, Bai YM (2022) Neurofilament light chain is a novel biomarker for major depression and related executive dysfunction. Int J Neuropsychopharmacol 25(2):99–105. https://doi.org/10.1093/ijnp/pyab068
Article PubMed CAS Google Scholar
Chmiel-Perzyńska I, Perzyński A, Wielosz M, Urbańska EM (2007) Hyperglycemia enhances the inhibitory effect of mitochondrial toxins and D,L-homocysteine on the brain production of kynurenic acid. Pharmacol Rep 59(3):268–273
Chmiel-Perzyńska I, Perzyński A, Urbańska EM (2014) Experimental diabetes mellitus type 1 increases hippocampal content of kynurenic acid in rats. Pharmacol Rep 66(6):1134–1139. https://doi.org/10.1016/j.pharep.2014.07.014
Article PubMed CAS Google Scholar
Cobb JA, O’Neill K, Milner J, Mahajan GJ, Lawrence TJ, May WL, Miguel-Hidalgo J, Rajkowska G, Stockmeier CA (2016) Density of GFAP-immunoreactive astrocytes is decreased in left hippocampi in major depressive disorder. Neuroscience 316:209–220. https://doi.org/10.1016/j.neuroscience.2015.12.044
Article PubMed CAS Google Scholar
da Silva Dias IC, Carabelli B, Ishii DK, de Morais H, de Carvalho MC, Rizzo de Souza LE, Zanata SM, Brandão ML, Cunha TM, Ferraz AC, Cunha JM, Zanoveli JM (2016) Indoleamine-2,3-dioxygenase/kynurenine pathway as a potential pharmacological target to treat depression associated with diabetes. Mol Neurobiol 53(10):6997–7009. https://doi.org/10.1007/s12035-015-9617-0
Article PubMed CAS Google Scholar
Detka J, Kurek A, Kucharczyk M, Głombik K, Basta-Kaim A, Kubera M, Lasoń W, Budziszewska B (2015) Brain glucose metabolism in an animal model of depression. Neuroscience 295:198–208. https://doi.org/10.1016/j.neuroscience.2015.03.046
Article PubMed CAS Google Scholar
Duarte AI, Candeias E, Alves IN, Mena D, Silva DF, Machado NJ, Campos EJ, Santos MS, Oliveira CR, Moreira PI (2020) Liraglutide protects against brain amyloid-β1-42 accumulation in female mice with early Alzheimer’s disease-like pathology by partially rescuing oxidative/nitrosative stress and inflammation. Int J Mol Sci 21(5):1746. https://doi.org/10.3390/ijms21051746
Article PubMed PubMed Central CAS Google Scholar
Dudek KA, Dion-Albert L, Lebel M, LeClair K, Labrecque S, Tuck E, Ferrer Perez C, Golden SA, Tamminga C, Turecki G, Mechawar N, Russo SJ, Menard C (2020) Molecular adaptations of the blood-brain barrier promote stress resilience vs. depression. Proc Natl Acad Sci USA 117(6):3326–3336. https://doi.org/10.1073/pnas.1914655117
Article PubMed PubMed Central CAS Google Scholar
Dziewa M, Bańka B, Herbet M, Piątkowska-Chmiel I (2023) Eating disorders and diabetes: facing the dual challenge. Nutrients 15(18):3955. https://doi.org/10.3390/nu15183955
Article PubMed PubMed Central Google Scholar
Franklin M, Bermudez I, Murck H, Singewald N, Gaburro S (2012) Sub-chronic dietary tryptophan depletion–an animal model of depression with improved face and good construct validity. J Psychiatr Res 46(2):239–247. https://doi.org/10.1016/j.jpsychires.2011.10.003
Article PubMed CAS Google Scholar
García-Revilla J, Boza-Serrano A, Espinosa-Oliva AM, Soto MS, Deierborg T, Ruiz R, de Pablos RM, Burguillos MA, Venero JL (2022) Galectin-3, a rising star in modulating microglia activation under conditions of neurodegeneration. Cell Death Dis 13(7):628. https://doi.org/10.1038/s41419-022-05058-3
Article PubMed PubMed Central CAS Google Scholar
Gil-Lozano M, Pérez-Tilve D, Alvarez-Crespo M, Martís A, Fernandez AM, Catalina PA, Gonzalez-Matias LC, Mallo F (2010) GLP-1(7–36)-amide and Exendin-4 stimulate the HPA axis in rodents and humans. Endocrinology 151(6):2629–2640. https://doi.org/10.1210/en.2009-0915
Article PubMed CAS Google Scholar
Głombik K, Detka J, Kurek A, Budziszewska B (2020) Impaired brain energy metabolism: involvement in depression and hypothyroidism. Front Neurosci 14:586939. https://doi.org/10.3389/fnins.2020.586939
Article PubMed PubMed Central Google Scholar
Gold PW, Goodwin FK, Chrousos GP (1988) Clinical and biochemical manifestations of depression. Relation to the neurobiology of stress (1). N Engl J Med 319(6):348–353. https://doi.org/10.1056/NEJM198808113190606
Article PubMed CAS Google Scholar
Hall C. S., Ballachey E. L., 1932. A study of the rat’s behavior in a field. A contribution to method in comparative psychology, vol 6. University of California Publications in Psychology, Berkeley, pp 1–12
Haque A, Polcyn R, Matzelle D, Banik NL (2018) New insights into the role of neuron-specific enolase in neuro-inflammation, neurodegeneration, and neuroprotection. Brain Sci 8(2):33. https://doi.org/10.3390/brainsci8020033
Article PubMed PubMed Central CAS Google Scholar
Hestad K, Alexander J, Rootwelt H, Aaseth JO (2022) The role of tryptophan dysmetabolism and quinolinic acid in depressive and neurodegenerative diseases. Biomolecules 12(7):998. https://doi.org/10.3390/biom12070998
Article PubMed PubMed Central CAS Google Scholar
Katsurada K, Yada T (2016) Neural effects of gut- and brain-derived glucagon-like peptide-1 and its receptor agonist. J Diabetes Investig 7(Suppl 1):64–69. https://doi.org/10.1111/jdi.12464
Article PubMed PubMed Central CAS Google Scholar
Kegel ME, Bhat M, Skogh E, Samuelsson M, Lundberg K, Dahl ML, Sellgren C, Schwieler L, Engberg G, Schuppe-Koistinen I, Erhardt S (2014) Imbalanced kynurenine pathway in schizophrenia. Int J Tryptophan Res 7:15–22. https://doi.org/10.4137/IJTR.S16800
Comments (0)