Comparing In vitro Protein Aggregation Modelling Using Strategies Relevant to Neuropathologies

Alam M, Schmidt WJ (2002) Rotenone destroys dopaminergic neurons and induces parkinsonian symptoms in rats. Behav Brain Res 136(1):317–324. https://doi.org/10.1016/s0166-4328(02)00180-8

Article  CAS  PubMed  Google Scholar 

Bang Y, Kang BY, Choi HJ (2014) Preconditioning stimulus of proteasome inhibitor enhances aggresome formation and autophagy in differentiated SH-SY5Y cells. Neurosci Lett 566:263–268. https://doi.org/10.1016/j.neulet.2014.02.056

Article  CAS  PubMed  Google Scholar 

Bauer PO, Hudec R, Goswami A, Kurosawa M, Matsumoto G, Mikoshiba K, Nukina N (2012) ROCK-phosphorylated vimentin modifies mutant huntingtin aggregation via sequestration of IRBIT. Mol Neurodegener 7:43. https://doi.org/10.1186/1750-1326-7-43

Article  CAS  PubMed  PubMed Central  Google Scholar 

Braun RJ, Sommer C, Leibiger C, Gentier RJG, Dumit VI, Paduch K, Eisenberg T, Habernig L, Trausinger G, Magnes C, Pieber T, Sinner F, Dengjel J, van Leeuwen FW, Kroemer G, Madeo F (2015) Accumulation of basic amino acids at mitochondria dictates the cytotoxicity of aberrant ubiquitin. Cell Rep 10(9):1557–1571. https://doi.org/10.1016/j.celrep.2015.02.009

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bruni AC, Bernardi L, Gabelli C (2020) From beta amyloid to altered proteostasis in Alzheimer’s disease. Ageing Res Rev 64:101126. https://doi.org/10.1016/j.arr.2020.101126

Article  CAS  PubMed  Google Scholar 

Bukhari H, Glotzbach A, Kolbe K, Leonhardt G, Loosse C, Muller T (2017) Small things matter: implications of APP intracellular domain AICD nuclear signaling in the progression and pathogenesis of Alzheimer’s disease. Prog Neurobiol 156:189–213. https://doi.org/10.1016/j.pneurobio.2017.05.005

Article  CAS  PubMed  Google Scholar 

Busciglio J, Pelsman A, Wong C, Pigino G, Yuan M, Mori H, Yankner BA (2002) Altered metabolism of the amyloid beta precursor protein is associated with mitochondrial dysfunction in Down’s syndrome. Neuron 33(5):677–688. https://doi.org/10.1016/s0896-6273(02)00604-9

Article  CAS  PubMed  Google Scholar 

Chaves RS, Melo TQ, Martins SA, Ferrari MF (2010) Protein aggregation containing beta-amyloid, alpha-synuclein and hyperphosphorylated tau in cultured cells of hippocampus, substantia nigra and locus coeruleus after rotenone exposure. BMC Neurosci 11:144. https://doi.org/10.1186/1471-2202-11-144

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cheng Y, Bai F (2018) The association of tau With mitochondrial dysfunction in Alzheimer’s disease. Front Neurosci 12:163. https://doi.org/10.3389/fnins.2018.00163

Article  PubMed  PubMed Central  Google Scholar 

Cho JH, Johnson GV (2004) Primed phosphorylation of tau at Thr231 by glycogen synthase kinase 3beta (GSK3beta) plays a critical role in regulating tau’s ability to bind and stabilize microtubules. J Neurochem 88(2):349–358. https://doi.org/10.1111/j.1471-4159.2004.02155.x

Article  CAS  PubMed  Google Scholar 

Clare DK, Saibil HR (2013) ATP-driven molecular chaperone machines. Biopolymers 99(11):846–859. https://doi.org/10.1002/bip.22361

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cyr M, Sotnikova TD, Gainetdinov RR, Caron MG (2006) Dopamine enhances motor and neuropathological consequences of polyglutamine expanded huntingtin. FASEB J 20(14):2541–2543. https://doi.org/10.1096/fj.06-6533fje

Article  CAS  PubMed  Google Scholar 

da Cruz e Silva EF, da Cruz e Silva OA (2003) Protein phosphorylation and APP metabolism. Neurochem Res 28(10):1553–1561. https://doi.org/10.1023/a:1025630627319

Article  PubMed  Google Scholar 

da Cruz e Silva OA, Fardilha M, Henriques AG, Rebelo S, Vieira S, da Cruz e Silva EF (2004) Signal transduction therapeutics: relevance for Alzheimer’s disease. J Mol Neurosci 23(1–2):123–142. https://doi.org/10.1385/JMN:23:1-2:123

Article  PubMed  Google Scholar 

Dedmon MM, Christodoulou J, Wilson MR, Dobson CM (2005) Heat shock protein 70 inhibits alpha-synuclein fibril formation via preferential binding to prefibrillar species. J Biol Chem 280(15):14733–14740. https://doi.org/10.1074/jbc.M413024200

Article  CAS  PubMed  Google Scholar 

Delobel P, Leroy O, Hamdane M, Sambo AV, Delacourte A, Buee L (2005) Proteasome inhibition and Tau proteolysis: an unexpected regulation. FEBS Lett 579(1):1–5. https://doi.org/10.1016/j.febslet.2004.11.018

Article  CAS  PubMed  Google Scholar 

Dhanalakshmi C, Manivasagam T, Nataraj J, Justin Thenmozhi A, Essa MM (2015) Neurosupportive role of vanillin, a natural phenolic compound, on rotenone induced neurotoxicity in SH-SY5Y neuroblastoma cells. Evid Based Complement Alternat Med 2015:626028. https://doi.org/10.1155/2015/626028

Article  PubMed  PubMed Central  Google Scholar 

Di Maio R, Barrett PJ, Hoffman EK, Barrett CW, Zharikov A, Borah A, Hu X, McCoy J, Chu CT, Burton EA, Hastings TG, Greenamyre JT (2016) Alpha-Synuclein binds to TOM20 and inhibits mitochondrial protein import in Parkinson’s disease. Sci Transl Med 8(342):342ra378. https://doi.org/10.1126/scitranslmed.aaf3634

Article  CAS  Google Scholar 

Elbaz A, Moisan F (2008) Update in the epidemiology of Parkinson’s disease. Curr Opin Neurol 21(4):454–460. https://doi.org/10.1097/WCO.0b013e3283050461

Article  PubMed  Google Scholar 

Faustini G, Bono F, Valerio A, Pizzi M, Spano P, Bellucci A (2017) Mitochondria and alpha-synuclein: friends or foes in the pathogenesis of parkinson’s disease? Genes (Basel). https://doi.org/10.3390/genes8120377

Article  PubMed  Google Scholar 

Faustini G, Marchesan E, Zonta L, Bono F, Bottani E, Longhena F, Ziviani E, Valerio A, Bellucci A (2019) Alpha-synuclein preserves mitochondrial fusion and function in neuronal cells. Oxid Med Cell Longev 2019:4246350. https://doi.org/10.1155/2019/4246350

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ferreira-Fernandes E, Esteves SL, Korrodi-Gregorio L, Luers G, Afreixo V, Fardilha M, da Cruz e Silva OA (2015) Synphilin-1A is a phosphoprotein phosphatase 1-interacting protein and affects PPP1 sorting to subcellular compartments. J Mol Neurosci 55(2):385–395. https://doi.org/10.1007/s12031-014-0343-2

Article  CAS  PubMed  Google Scholar 

Gandy SE, Caporaso GL, Buxbaum JD, de Cruz Silva O, Iverfeldt K, Nordstedt C, Suzuki T, Czernik AJ, Nairn AC, Greengard P (1993) Protein phosphorylation regulates relative utilization of processing pathways for Alzheimer beta/A4 amyloid precursor protein. Ann N Y Acad Sci 695:117–121. https://doi.org/10.1111/j.1749-6632.1993.tb23038.x

Article  CAS  PubMed  Google Scholar 

Glenner GG, Wong CW (1984) Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun 120(3):885–890. https://doi.org/10.1016/s0006-291x(84)80190-4

Article  CAS  PubMed  Google Scholar 

Goedert M, Spillantini MG, Cairns NJ, Crowther RA (1992) Tau proteins of Alzheimer paired helical filaments: abnormal phosphorylation of all six brain isoforms. Neuron 8(1):159–168. https://doi.org/10.1016/0896-6273(92)90117-v

Article  CAS  PubMed  Google Scholar 

Guardia-Laguarta C, Area-Gomez E, Rub C, Liu Y, Magrane J, Becker D, Voos W, Schon EA, Przedborski S (2014) alpha-Synuclein is localized to mitochondria-associated ER membranes. J Neurosci 34(1):249–259. https://doi.org/10.1523/JNEUROSCI.2507-13.2014

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guo N, Peng Z (2013) MG132, a proteasome inhibitor, induces apoptosis in tumor cells. Asia Pac J Clin Oncol 9(1):6–11. https://doi.org/10.1111/j.1743-7563.2012.01535.x

Article  PubMed  Google Sch

Comments (0)

No login
gif