Alarcon-Gil J, Sierra-Magro A, Morales-Garcia JA, Sanz-SanCristobal M, Alonso-Gil S, Cortes-Canteli M, Niso-Santano M, Martinez-Chacon G, Fuentes JM, Santos A, Perez-Castillo A (2022) Neuroprotective and anti-inflammatory effects of linoleic acid in models of Parkinson’s disease: the implication of lipid droplets and lipophagy. Cells. https://doi.org/10.3390/cells11152297
Article PubMed PubMed Central Google Scholar
Andersen JV, Westi EW, Jakobsen E, Urruticoechea N, Borges K, Aldana BI (2021) Astrocyte metabolism of the medium-chain fatty acids octanoic acid and decanoic acid promotes GABA synthesis in neurons via elevated glutamine supply. Mol Brain 14:132. https://doi.org/10.1186/s13041-021-00842-2
Article CAS PubMed PubMed Central Google Scholar
Ashizawa T, Saito T, Okochi T, Ninomiya K, Ito K, Aoki R, Ikeda M, Iwata N (2024) Association of plasma arachidonic acid levels with a bipolar disorder and the effects of a FADS gene variant. Transl Psychiatry 14:435. https://doi.org/10.1038/s41398-024-03141-1
Article CAS PubMed PubMed Central Google Scholar
Barrera C, Valenzuela R, Rincon MA, Espinosa A, Lopez-Arana S, Gonzalez-Manan D, Romero N, Vargas R, Videla LA (2020) Iron-induced derangement in hepatic Delta-5 and Delta-6 desaturation capacity and fatty acid profile leading to steatosis: Impact on extrahepatic tissues and prevention by antioxidant-rich extra virgin olive oil. Prostaglandins Leukot Essent Fatty Acids 153:102058. https://doi.org/10.1016/j.plefa.2020.102058
Article CAS PubMed Google Scholar
Bergman S, Cater RJ, Plante A, Mancia F, Khelashvili G (2023) Substrate binding-induced conformational transitions in the omega-3 fatty acid transporter MFSD2A. Nat Commun 14:3391. https://doi.org/10.1038/s41467-023-39088-y
Article CAS PubMed PubMed Central Google Scholar
Borsini A, Nicolaou A, Camacho-Munoz D, Kendall AC, Di Benedetto MG, Giacobbe J, Su KP, Pariante CM (2021) Omega-3 polyunsaturated fatty acids protect against inflammation through production of LOX and CYP450 lipid mediators: relevance for major depression and for human hippocampal neurogenesis. Mol Psychiatry 26:6773–6788. https://doi.org/10.1038/s41380-021-01160-8
Article CAS PubMed PubMed Central Google Scholar
Bosviel R, Joumard-Cubizolles L, Chinetti-Gbaguidi G, Bayle D, Copin C, Hennuyer N, Duplan I, Staels B, Zanoni G, Porta A, Balas L, Galano JM, Oger C, Mazur A, Durand T, Gladine C (2017) DHA-derived oxylipins, neuroprostanes and protectins, differentially and dose-dependently modulate the inflammatory response in human macrophages: Putative mechanisms through PPAR activation. Free Radic Biol Med 103:146–154. https://doi.org/10.1016/j.freeradbiomed.2016.12.018
Article CAS PubMed Google Scholar
Boutanquoi PM, Khan AS, Cabeza L, Jantzen L, Gautier T, Yesylevskyy S, Ramseyer C, Masson D, Van Waes V, Hichami A, Khan NA (2024) A novel fatty acid analogue triggers CD36-GPR120 interaction and exerts anti-inflammatory action in endotoxemia. Cell Mol Life Sci 81:176. https://doi.org/10.1007/s00018-024-05207-1
Article CAS PubMed PubMed Central Google Scholar
Cao H, Li MY, Li G, Li SJ, Wen B, Lu Y, Yu X (2020) Retinoid X receptor alpha regulates DHA-dependent spinogenesis and functional synapse formation in vivo. Cell Rep 31:107649. https://doi.org/10.1016/j.celrep.2020.107649
Article CAS PubMed Google Scholar
Chang PK, Khatchadourian A, McKinney RA, Maysinger D (2015) Docosahexaenoic acid (DHA): a modulator of microglia activity and dendritic spine morphology. J Neuroinflammation 12:34. https://doi.org/10.1186/s12974-015-0244-5
Article CAS PubMed PubMed Central Google Scholar
Chang CY, Wu CC, Wang JD, Li JR, Wang YY, Lin SY, Chen WY, Liao SL, Chen CJ (2021) DHA attenuated Japanese Encephalitis virus infection-induced neuroinflammation and neuronal cell death in cultured rat Neuron/glia. Brain Behav Immun 93:194–205. https://doi.org/10.1016/j.bbi.2021.01.012
Article CAS PubMed Google Scholar
Che H, Zhou M, Zhang T, Zhang L, Ding L, Yanagita T, Xu J, Xue C, Wang Y (2018) Comparative study of the effects of phosphatidylcholine rich in DHA and EPA on Alzheimer’s disease and the possible mechanisms in CHO-APP/PS1 cells and SAMP8 mice. Food Funct 9:643–654. https://doi.org/10.1039/c7fo01342f
Article CAS PubMed Google Scholar
Chen C, Liao J, Xia Y, Liu X, Jones R, Haran J, McCormick B, Sampson TR, Alam A, Ye K (2022) Gut microbiota regulate Alzheimer’s disease pathologies and cognitive disorders via PUFA-associated neuroinflammation. Gut 71:2233–2252. https://doi.org/10.1136/gutjnl-2021-326269
Article CAS PubMed Google Scholar
Chitre NM, Wood BJ, Ray A, Moniri NH, Murnane KS (2020) Docosahexaenoic acid protects motor function and increases dopamine synthesis in a rat model of Parkinson’s disease via mechanisms associated with increased protein kinase activity in the striatum. Neuropharmacology 167:107976. https://doi.org/10.1016/j.neuropharm.2020.107976
Article CAS PubMed PubMed Central Google Scholar
Chu CS, Hung CF, Ponnusamy VK, Chen KC, Chen NC (2022) Higher serum DHA and slower cognitive decline in patients with Alzheimer’s disease: two-year follow-up. Nutrients. https://doi.org/10.3390/nu14061159
Article PubMed PubMed Central Google Scholar
Devane WA, Dysarz FA 3rd, Johnson MR, Melvin LS, Howlett AC (1988) Determination and characterization of a cannabinoid receptor in rat brain. Mol Pharmacol 34:605–613
Article CAS PubMed Google Scholar
Devarshi PP, Grant RW, Ikonte CJ, Hazels Mitmesser S (2019) Maternal omega-3 nutrition, placental transfer and fetal brain development in gestational diabetes and preeclampsia. Nutrients. https://doi.org/10.3390/nu11051107
Article PubMed PubMed Central Google Scholar
Do Carmo S, Kautzmann MI, Bhattacharjee S, Jun B, Steinberg C, Emmerson JT, Malcolm JC, Bonomo Q, Bazan NG, Cuello AC (2024) Differential effect of an evolving amyloid and tau pathology on brain phospholipids and bioactive lipid mediators in rat models of Alzheimer-like pathology. J Neuroinflammation 21:185. https://doi.org/10.1186/s12974-024-03184-7
Article CAS PubMed PubMed Central Google Scholar
Drolet J, Buchner-Duby B, Stykel MG, Coackley C, Kang JX, Ma DWL, Ryan SD (2021) Docosahexanoic acid signals through the Nrf2-Nqo1 pathway to maintain redox balance and promote neurite outgrowth. Mol Biol Cell 32:511–520. https://doi.org/10.1091/mbc.E20-09-0599
Article CAS PubMed PubMed Central Google Scholar
Dyall SC (2015) Long-chain omega-3 fatty acids and the brain: a review of the independent and shared effects of EPA DPA and DHA. Front Aging Neurosci 7:52. https://doi.org/10.3389/fnagi.2015.00052
Article PubMed PubMed Central Google Scholar
Ferguson JF, Xue C, Hu Y, Li M, Reilly MP (2016) Adipose tissue RNASeq reveals novel gene-nutrient interactions following n-3 PUFA supplementation and evoked inflammation in humans. J Nutr Biochem 30:126–132. https://doi.org/10.1016/j.jnutbio.2015.12.010
Article CAS PubMed PubMed Central Google Scholar
Gao J, Fan H, Wang X, Cheng Y, Hao J, Han S, Wu S (2024) Association between serum omega-3 PUFAs levels and cognitive impairment in never medically treated first-episode patients with geriatric depression: a cross-sectional study. J Affect Disord 346:1–6. https://doi.org/10.1016/j.jad.2023.10.153
Article CAS PubMed Google Scholar
Gould JF, Makrides M, Gibson RA, Sullivan TR, McPhee AJ, Anderson PJ, Best KP, Sharp M, Cheong JLY, Opie GF, Travadi J, Bednarz JM, Davis PG, Simmer K, Doyle LW, Collins CT (2022) Neonatal docosahexaenoic acid in preterm infants and intelligence at 5 years. N Engl J Med 387:1579–1588. https://doi.org/10.1056/NEJMoa2206868
Article CAS PubMed Google Scholar
Hahn J, Cook NR, Alexander EK, Friedman S, Walter J, Bubes V, Kotler G, Lee IM, Manson JE, Costenbader KH (2022) Vitamin D and marine omega 3 fatty acid supplementation and incident autoimmune disease: VITAL randomized controlled trial. BMJ 376:e066452. https://doi.org/10.1136/bmj-2021-066452
Article PubMed PubMed Central Google Scholar
Hernando S, Requejo C, Herran E, Ruiz-Ortega JA, Morera-Herreras T, Lafuente JV, Ugedo L, Gainza E, Pedraz JL, Igartua M, Hernandez RM (2019) Beneficial effects of n-3 polyunsaturated fatty acids administration in a partial lesion model of Parkinson’s disease: the role of glia and NRf2 regulation. Neurobiol Dis 121:252–262. https://doi.org/10.1016/j.nbd.2018.10.001
Comments (0)