aan het Rot M, Mathew SJ, Charney DS (2009) Neurobiological mechanisms in major depressive disorder. Canad Med Associat J 180(3):305–313. https://doi.org/10.1503/cmaj.080697
Abiodun OA, Ola MS (2020) Role of brain renin angiotensin system in neurodegeneration: an update. Saudi J Biol Sci 27(3):905–912. https://doi.org/10.1016/.sjbs.2020.01.026
Article CAS PubMed PubMed Central Google Scholar
Agudelo LZ, Femenía T, Orhan F, Porsmyr-Palmertz M, Goiny M, Martinez-Redondo V, Correia JC, Izadi M, Bhat M, Schuppe-Koistinen I, Pettersson AT, Ferreira DMS, Krook A, Barres R, Zierath JR, Erhardt S, Lindskog M, Ruas JL (2014) Skeletal Muscle PGC-1α1 modulates kynurenine metabolism and mediates resilience to stress-induced depression. Cell 159(1):33–45. https://doi.org/10.1016/j.cell.2014.07.051
Article CAS PubMed Google Scholar
Akil H, Nestler EJ (2023) The neurobiology of stress: Vulnerability, resilience, and major depression. Proc Nat Acad Sci. https://doi.org/10.1073/pnas.2312662120
Article PubMed PubMed Central Google Scholar
Albert KM, Newhouse PA (2019) Estrogen, stress, and depression: cognitive and biological interactions. Annu Rev Clin Psychol 15(1):399–423. https://doi.org/10.1146/annurev-clinpsy-050718-095557
Article PubMed PubMed Central Google Scholar
Ali NH, Al-Kuraishy HM, Al-Gareeb AI, Albuhadily AK, Hamad RS, Alexiou A, Papadakis M, Saad HM, Batiha GES (2024) Role of brain renin–angiotensin system in depression: a new perspective. CNS Neurosci Therapeut. https://doi.org/10.1111/cns.14525
Al-Kachak A, Di Salvo G, Fulton SL, Chan JC, Farrelly LA, Lepack AE, Bastle RM, Kong L, Cathomas F, Newman EL, Menard C, Ramakrishnan A, Safovich P, Lyu Y, Covington HE, Shen L, Gleason K, Tamminga CA, Russo SJ, Maze I (2024) Histone serotonylation in dorsal raphe nucleus contributes to stress- and antidepressant-mediated gene expression and behavior. Nat Commun 15(1):5042. https://doi.org/10.1038/s41467-024-49336-4
Article CAS PubMed PubMed Central Google Scholar
Alotiby A (2024) Immunology of stress: a review article. J Clin Med 13(21):6394. https://doi.org/10.3390/jcm13216394
Article CAS PubMed PubMed Central Google Scholar
Alves-dos-Santos L, de Resende L, S., & Chiavegatto, S. (2020) Susceptibility and resilience to chronic social defeat stress in adolescent male mice: no correlation between social avoidance and sucrose preference. Neurobiol Stress 12:100221. https://doi.org/10.1016/j.ynstr.2020.100221
Article PubMed PubMed Central Google Scholar
Alzuri SE, Rosas NM, Hlavacova N, Jezova D, Fuchsova B (2023) Role of miR-124-3p in regulatory mechanisms of Gpm6a expression in the hippocampus of chronically stressed rats. J Neurochem 165(4):603–621. https://doi.org/10.1111/jnc.15810
Article CAS PubMed Google Scholar
Amasi-Hartoonian N, Sforzini L, Cattaneo A, Pariante CM (2022) Cause or consequence? Understanding the role of cortisol in the increased inflammation observed in depression. Curr Opin Endocrin Metabol Res 24:100356. https://doi.org/10.1016/j.coemr.2022.100356
Amin M, Wu R, Postolache TT, Gragnoli C (2024) The prolactin receptor (PRLR) gene is linked to and associated with the comorbidity of depression and type 2 diabetes in Italian families. Gen Dis. https://doi.org/10.1016/j.gendis.2023.06.018
Arnsten AFT, Raskind MA, Taylor FB, Connor DF (2015) The effects of stress exposure on prefrontal cortex: translating basic research into successful treatments for post-traumatic stress disorder. Neurobiol Stress 1:89–99. https://doi.org/10.1016/j.ynstr.2014.10.002
Athira KV, W AB, Soren K, Das T, Dey S, Samudrala PK, Kumar A, Lahkar M, Chakravarty S (2021) Differential modulation of GR signaling and HDACs in the development of resilient/vulnerable phenotype and antidepressant-like response of vorinostat. Psychoneuroendocrinology 124:105083. https://doi.org/10.1016/j.psyneuen.2020.105083
Baliyan S, Cimadevilla J, de Vidania S, Pulopulos M, Sandi C, Venero C (2021) Differential susceptibility to the impact of the COVID-19 pandemic on working memory, empathy, and perceived stress: the role of cortisol and resilience. Brain Sci 11(3):348. https://doi.org/10.3390/brainsci11030348
Article CAS PubMed PubMed Central Google Scholar
Battaglia MR, Di Fazio C, Battaglia S (2023) Activated Tryptophan-Kynurenine metabolic system in the human brain is associated with learned fear. Front Mol Neurosci. https://doi.org/10.3389/fnmol.2023.1217090
Article PubMed PubMed Central Google Scholar
Bear T, Dalziel J, Coad J, Roy N, Butts C, Gopal P (2021) The microbiome-gut-brain axis and resilience to developing anxiety or depression under stress. Microorganisms MDPI AG. https://doi.org/10.3390/microorganisms9040723
Begega A, Jove CI, López M, Moreno RD (2023) Impact of environmental enrichment on the GABAergic neurons and glucocorticoid receptors in the hippocampus and nucleus accumbens of Wistar rats: pro-resilient effects. Brain Res Bull. https://doi.org/10.1016/j.brainresbull.2023.110699
Belleau EL, Treadway MT, Pizzagalli DA (2019) The impact of stress and major depressive disorder on hippocampal and medial prefrontal cortex morphology. Biol Psychiat 85(6):443–453. https://doi.org/10.1016/j.biopsych.2018.09.031
Bian Y, Ma Y, Ma Q, Yang L, Zhu Q, Li W, Meng L (2021) Prolonged Maternal separation induces the depression-like behavior susceptibility to chronic unpredictable mild stress exposure in mice. Bio Med Res Int. https://doi.org/10.1155/2021/6681397
Bonifacino T, Mingardi J, Facchinetti R, Sala N, Frumento G, Ndoj E, Valenza M, Paoli C, Ieraci A, Torazza C, Balbi M, Guerinoni M, Muhammad N, Russo I, Milanese M, Scuderi C, Barbon A, Steardo L, Bonanno G, Musazzi L (2023) Changes at glutamate tripartite synapses in the prefrontal cortex of a new animal model of resilience/vulnerability to acute stress. Transl Psychiat 13(1):62. https://doi.org/10.1038/s41398-023-02366-w
Bosquet Enlow M, De Vivo I, Petty CR, Nelson CA (2024) Temperament and sex as moderating factors of the effects of exposure to maternal depression on telomere length in early childhood. Dev Psychopathol. https://doi.org/10.1017/S0954579424000518
Brivio P, Buoso E, Masi M, Gallo MT, Gruca P, Lason M, Litwa E, Papp M, Fumagalli F, Racchi M, Corsini E, Calabrese F (2021) The coupling of RACK1 with the beta isoform of the glucocorticoid receptor promotes resilience to chronic stress exposure. Neurobiol Stress. https://doi.org/10.1016/j.ynstr.2021.100372
Article PubMed PubMed Central Google Scholar
Brivio P, Gallo MT, Gruca P, Lason M, Litwa E, Fumagalli F, Papp M, Calabrese F (2023) Resilience to chronic mild stress-induced anhedonia preserves the ability of the ventral hippocampus to respond to an acute challenge. Eur Arch Psychiatry Clin Neurosci 273(5):1041–1050. https://doi.org/10.1007/s00406-022-01470-0
Cahill S, Chandola T, Hager R (2022) Genetic variants associated with resilience in human and animal studies. Front Psych 13:840120
Campos-Cardoso R, Novaes LS, Godoy LD, dos Santos NB, Perfetto JG, Lazarini-Lopes W, Garcia-Cairasco N, Padovan CM, Munhoz CD (2023) The resilience of adolescent male rats to acute stress-induced delayed anxiety is age-related and glucocorticoid release-dependent. Neuropharmacology 226:109385. https://doi.org/10.1016/j.neuropharm.2022.109385
Article CAS PubMed Google Scholar
Cannon, W.B., 1929. Bodily changes in pain, hunger, fear, and rage: An account of recent researches into the function of emotional excitement. Branford.
Cathomas F, Murrough JW, Nestler EJ, Han M-H, Russo SJ (2019) Neurobiology of resilience: interface between mind and body. Biol Psychiat 86(6):410–420. https://doi.org/10.1016/j.biopsych.2019.04.011
Chakravarty S, Pathak SS, Maitra S, Khandelwal N, Chandra KB, Kumar A (2014) Epigenetic regulatory mechanisms in stress-induced behavior. Int Rev Neurobiol 115:117–154
Chakravarty S, Reddy BR, Sudhakar SR, Saxena S, Das T, Meghah V, Brahmendra Swamy CV, Kumar A, Idris MM (2013) Chronic unpredictable stress (CUS)-induced anxiety and related mood disorders in a zebrafish model: altered brain proteome profile implicates mitochondrial dysfunction. PLoS ONE 8(5):e63302. https://doi.org/10.1371/journal.pone.0063302
Comments (0)