Downregulation of Hmox1 and Rpgrip1l Expression Linked to Risk-Taking Behavior, Reduced Depressive Symptoms, and Diminished Novelty Socialization in SUMO1 Knockout Mice

Andreu-Cervera A, Anselme I, Karam A, Laclef C, Catala M, Schneider-Maunoury S (2019) The ciliopathy gene ftm/rpgrip1l controls mouse forebrain patterning via region-specific modulation of Hedgehog/Gli signaling. J Neurosci 39:2398–2415

PubMed  PubMed Central  Google Scholar 

Arioli M, Cattaneo Z, Rusconi ML, Blandini F, Tettamanti M (2022) Action and emotion perception in Parkinson’s disease: a neuroimaging meta-analysis. NeuroImage Clin 35:103031

Article  PubMed  PubMed Central  Google Scholar 

Arts HH, Doherty D, van Beersum SE, Parisi MA, Letteboer SJ, Gorden NT, Peters TA, Märker T, Voesenek K, Kartono A, Ozyurek H, Farin FM, Kroes HY, Wolfrum U, Brunner HG, Cremers FP, Glass IA, Knoers NV, Roepman R (2007) Mutations in the gene encoding the basal body protein RPGRIP1L, a nephrocystin-4 interactor, cause Joubert syndrome. Nat Genet 39:882–888

Article  CAS  PubMed  Google Scholar 

Bai B et al (2020) Deep multilayer brain proteomics identifies molecular networks in Alzheimer’s disease progression. Neuron 105:975-991.e977

Article  CAS  PubMed  PubMed Central  Google Scholar 

Birey F, Li MY, Gordon A, Thete MV, Valencia AM, Revah O, Paşca AM, Geschwind DH, Paşca SP (2022) Dissecting the molecular basis of human interneuron migration in forebrain assembloids from Timothy syndrome. Cell Stem Cell 29:248-264.e247

Article  CAS  PubMed  Google Scholar 

Chen K, Gunter K, Maines MD (2000) Neurons overexpressing heme oxygenase-1 resist oxidative stress-mediated cell death. J Neurochem 75:304–313

Article  CAS  PubMed  Google Scholar 

Cheng J, Li F, Sun X, Liu S, Chen L, Tian F, Zhao Z, Hu H, Li X (2020) Low-dose alcohol ameliorated homocysteine-induced anxiety-related behavior via attenuating oxidative stress in mice. Neurosci Lett 714:134568

Article  CAS  PubMed  Google Scholar 

Cryan JF, Mombereau C, Vassout A (2005) The tail suspension test as a model for assessing antidepressant activity: review of pharmacological and genetic studies in mice. Neurosci Biobehav Rev 29:571–625

Article  CAS  PubMed  Google Scholar 

D’Adamo MC, Liantonio A, Conte E, Pessia M, Imbrici P (2020) Ion channels involvement in neurodevelopmental disorders. Neuroscience 440:337–359

Article  CAS  PubMed  Google Scholar 

Delous M et al (2007) The ciliary gene RPGRIP1L is mutated in cerebello-oculo-renal syndrome (Joubert syndrome type B) and Meckel syndrome. Nat Genet 39:875–881

Article  CAS  PubMed  Google Scholar 

Evdokimov E, Sharma P, Lockett SJ, Lualdi M, Kuehn MR (2008) Loss of SUMO1 in mice affects RanGAP1 localization and formation of PML nuclear bodies, but is not lethal as it can be compensated by SUMO2 or SUMO3. J Cell Sci 121:4106–4113

Article  CAS  PubMed  Google Scholar 

Feligioni M, Nishimune A, Henley JM (2009) Protein SUMOylation modulates calcium influx and glutamate release from presynaptic terminals. Eur J Neurosci 29:1348–1356

Article  PubMed  PubMed Central  Google Scholar 

Foran E, Rosenblum L, Bogush A, Pasinelli P, Trotti D (2014) Sumoylation of the astroglial glutamate transporter EAAT2 governs its intracellular compartmentalization. Glia 62:1241–1253

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gonzales MM, Garbarino VR, Pollet E, Palavicini JP, Kellogg DL, Jr., Kraig E, Orr ME (2022) Biological aging processes underlying cognitive decline and neurodegenerative disease. J Clin Investig 132

Haddad S, Ablinger C, Stanika R, Hessenberger M, Campiglio M, Ortner NJ, Tuluc P, Obermair GJ (2025) A biallelic mutation in CACNA2D2 associated with developmental and epileptic encephalopathy affects calcium channel-dependent as well as synaptic functions of α(2)δ-2. J Neurochem 169:e16197

Article  CAS  PubMed  Google Scholar 

Hay RT (2005) SUMO: a history of modification. Mol Cell 18:1–12

Article  CAS  PubMed  Google Scholar 

Hendriks IA, Vertegaal AC (2016) A comprehensive compilation of SUMO proteomics. Nat Rev Mol Cell Biol 17:581–595

Article  CAS  PubMed  Google Scholar 

Hou Y, Dan X, Babbar M, Wei Y, Hasselbalch SG, Croteau DL, Bohr VA (2019) Ageing as a risk factor for neurodegenerative disease. Nat Rev Neurol 15:565–581

Article  PubMed  Google Scholar 

Isozaki T, Komenoi S, Lu Q, Usuki T, Tomokata S, Matsutomo D, Sakai H, Bando K, Kiyonari H, Sakane F (2016) Deficiency of diacylglycerol kinase η induces lithium-sensitive mania-like behavior. J Neurochem 138:448–456

Article  CAS  PubMed  Google Scholar 

Iyer KA, Alix K, Eltit JM, Solis E Jr, Pan X, Argade MD, Khatri S, De Felice LJ, Sweet DH, Schulte MK, Dukat M (2019) Multi-modal antidepressant-like action of 6- and 7-chloro-2-aminodihydroquinazolines in the mouse tail suspension test. Psychopharmacology 236:2093–2104

Article  CAS  PubMed  Google Scholar 

Jackson SP, Durocher D (2013) Regulation of DNA damage responses by ubiquitin and SUMO. Mol Cell 49:795–807

Article  CAS  PubMed  Google Scholar 

Karayel O, Virreira Winter S, Padmanabhan S, Kuras YI, Vu DT, Tuncali I, Merchant K, Wills AM, Scherzer CR, Mann M (2022) Proteome profiling of cerebrospinal fluid reveals biomarker candidates for Parkinson’s disease. Cell Rep Med 3:100661

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kasap M, Dwyer DS (2021) Na(+) leak-current channel (NALCN) at the junction of motor and neuropsychiatric symptoms in Parkinson’s disease. J Neural Transm 128:749–762

Article  PubMed  Google Scholar 

Krumova P, Weishaupt JH (2013) Sumoylation in neurodegenerative diseases. Cell Mol Life Sci: CMLS 70:2123–2138

Article  CAS  PubMed  Google Scholar 

Lee L, Sakurai M, Matsuzaki S, Arancio O, Fraser P (2013) SUMO and Alzheimer’s disease. NeuroMol Med 15:720–736

Article  CAS  Google Scholar 

Lindberg FA, Nordenankar K, Fredriksson R (2022) SLC38A10 knockout mice display a decreased body weight and an increased risk-taking behavior in the open field test. Front Behav Neurosci 16:840987

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu Q, Xi Y, Wang Q, Liu J, Li P, Meng X, Liu K, Chen W, Liu X, Liu Z (2021) Mannan oligosaccharide attenuates cognitive and behavioral disorders in the 5xFAD Alzheimer’s disease mouse model via regulating the gut microbiota-brain axis. Brain Behav Immun 95:330–343

Article  CAS  PubMed  Google Scholar 

Loboda A, Jozkowicz A, Dulak J (2015) HO-1/CO system in tumor growth, angiogenesis and metabolism—targeting HO-1 as an anti-tumor therapy. Vascul Pharmacol 74:11–22

Article  CAS  PubMed  Google Scholar 

Loboda A, Damulewicz M, Pyza E, Jozkowicz A, Dulak J (2016) Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: an evolutionarily conserved mechanism. Cell Mol Life Sci 73:3221–3247

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lomelí H, Vázquez M (2011) Emerging roles of the SUMO pathway in development. Cell Mol Life Sci 68:4045–4064

Article  PubMed  PubMed Central  Google Scholar 

Nisticò R, Ferraina C, Marconi V, Blandini F, Negri L, Egebjerg J, Feligioni M (2014) Age-related changes of protein SUMOylation balance in the AβPP Tg2576 mouse model of Alzheimer’s disease. Front Pharmacol 5:63

PubMed  PubMed Central  Google Scholar 

Pentkowski NS, Rogge-Obando KK, Donaldson TN, Bouquin SJ, Clark BJ (2021) Anxiety and Alzheimer’s disease: Behavioral analysis and neural basis in rodent models of Alzheimer’s-related neuropathology. Neurosci Biobehav Rev 127:647–658

Comments (0)

No login
gif