Recent advances in pluripotent stem cell-derived cardiac organoids and heart-on-chip applications for studying anti-cancer drug-induced cardiotoxicity

Abecasis B, Canhão PGM, Almeida HV, Calmeiro T, Fortunato E, Gomes-Alves P, Serra M, Alves PM. Toward a microencapsulated 3D hiPSC-derived in vitro cardiac microtissue for recapitulation of human heart microenvironment features. Front Bioeng Biotechnol. 2020;8:580744. https://doi.org/10.3389/fbioe.2020.580744.

Article  PubMed  PubMed Central  Google Scholar 

Ahmad FB, Anderson RN. The leading causes of death in the US for 2020. JAMA. 2021;325:1829–30. https://doi.org/10.1001/jama.2021.5469.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Anderson D, Self T, Mellor IR, Goh G, Hill SJ, Denning C. Transgenic enrichment of cardiomyocytes from human embryonic stem cells. Mol Ther. 2007;15:2027–36. https://doi.org/10.1038/sj.mt.6300303.

Article  CAS  PubMed  Google Scholar 

Arai K, Murata D, Takao S, Nakayama K. Fabrication of cardiac constructs using bio-3D printer. Methods Molec Biol. 2021;2320:53–63. https://doi.org/10.1007/978-1-0716-1484-6_6.

Article  Google Scholar 

Avgerinos KI, Spyrou N, Mantzoros CS, Dalamaga M. Obesity and cancer risk: emerging biological mechanisms and perspectives. Metabolism: Clin Exp. 2019;92:121–35. https://doi.org/10.1016/j.metabol.2018.11.001.

Article  CAS  Google Scholar 

Beck TC, Arhontoulis DC, Morningstar JE, Hyams N, Stoddard A, Springs K, Mukherjee R, Helke K, Guo L, Moore K, et al. Cellular and molecular mechanisms of MEK1 inhibitor-induced cardiotoxicity. JACC Cardiooncology. 2022;4:535–48. https://doi.org/10.1016/j.jaccao.2022.07.009.

Article  PubMed  PubMed Central  Google Scholar 

Bergom C, Bradley JA, Ng AK, Samson P, Robinson C, Lopez-Mattei J, Mitchell JD. Past, present, and future of radiation-induced cardiotoxicity: refinements in targeting, surveillance, and risk stratification. JACC Cardiooncology. 2021;3:343–59. https://doi.org/10.1016/j.jaccao.2021.06.007.

Article  PubMed  PubMed Central  Google Scholar 

Birket MJ, Ribeiro MC, Verkerk AO, Ward D, Leitoguinho AR, den Hartogh SC, Orlova VV, Devalla HD, Schwach V, Bellin M, et al. Expansion and patterning of cardiovascular progenitors derived from human pluripotent stem cells. Nat Biotechnol. 2015;33:970–9. https://doi.org/10.1038/nbt.3271.

Article  CAS  PubMed  Google Scholar 

Bizy A, Guerrero-Serna G, Hu B, Ponce-Balbuena D, Willis BC, Zarzoso M, Ramirez RJ, Sener MF, Mundada LV, Klos M, et al. Myosin light chain 2-based selection of human iPSC-derived early ventricular cardiac myocytes. Stem Cell Res. 2013;11:1335–47. https://doi.org/10.1016/j.scr.2013.09.003.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Block T, Creech J, da Rocha AM, Marinkovic M, Ponce-Balbuena D, Jiménez-Vázquez EN, Griffey S, Herron TJ. Human perinatal stem cell derived extracellular matrix enables rapid maturation of hiPSC-CM structural and functional phenotypes. Sci Rep. 2020;10:19071. https://doi.org/10.1038/s41598-020-76052-y.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bowen TJ, Hall AR, Lloyd GR, Weber RJM, Wilson A, Pointon A, Viant MR. An extensive metabolomics workflow to discover cardiotoxin-induced molecular perturbations in microtissues. Metabolites. 2021;11(9):644. https://doi.org/10.3390/metabo11090644.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bruhn J, Malmborg M, Garred CH, Ravn P, Zahir D, Andersson C, Gislason G, Torp-Pedersen C, Kragholm K, Fosbol E, et al. Temporal trends in the incidence of malignancy in heart failure: a nationwide Danish study. Eur Heart J. 2023. https://doi.org/10.1093/eurheartj/ehac797.

Article  PubMed  Google Scholar 

Burridge PW, Matsa E, Shukla P, Lin ZC, Churko JM, Ebert AD, Lan F, Diecke S, Huber B, Mordwinkin NM, et al. Chemically defined generation of human cardiomyocytes. Nat Methods. 2014;11:855–60. https://doi.org/10.1038/nmeth.2999.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Burridge PW, Li YF, Matsa E, Wu H, Ong SG, Sharma A, Holmström A, Chang AC, Coronado MJ, Ebert AD, et al. Human induced pluripotent stem cell-derived cardiomyocytes recapitulate the predilection of breast cancer patients to doxorubicin-induced cardiotoxicity. Nat Med. 2016;22:547–56. https://doi.org/10.1038/nm.4087.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Campostrini G, Meraviglia V, Giacomelli E, van Helden RWJ, Yiangou L, Davis RP, Bellin M, Orlova VV, Mummery CL. Generation, functional analysis and applications of isogenic three-dimensional self-aggregating cardiac microtissues from human pluripotent stem cells. Nat Protoc. 2021;16:2213–56. https://doi.org/10.1038/s41596-021-00497-2.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cheung YF, Li VW, Lai CT, Shin VY, Keung W, Cheuk DK, Kwong A, Li RA, Chan GC. Circulating high-sensitivity troponin T and microRNAs as markers of myocardial damage during childhood leukaemia treatment. Pediatr Res. 2021;89:1245–52. https://doi.org/10.1038/s41390-020-1049-5.

Article  CAS  PubMed  Google Scholar 

Chikae S, Kubota A, Nakamura H, Oda A, Yamanaka A, Akagi T, Akashi M. Bioprinting 3D human cardiac tissue chips using the pin type printer “microscopic painting device” and analysis for cardiotoxicity. Biomed Mater. 2021;16:025017. https://doi.org/10.1088/1748-605X/abdbde.

Article  CAS  PubMed  Google Scholar 

Chramiec A, Teles D, Yeager K, Marturano-Kruik A, Pak J, Chen T, Hao L, Wang M, Lock R, Tavakol DN, et al. Integrated human organ-on-a-chip model for predictive studies of anti-tumor drug efficacy and cardiac safety. Lab Chip. 2020;20:4357–72. https://doi.org/10.1039/d0lc00424c.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cruz-Moreira D, Visone R, VasquesNovoa FASB, Leite-Moreira A, Redaelli A, Moretti M, Rasponi M. Assessing the influence of perfusion on cardiac microtissue maturation: a heart-on-chip platform embedding peristaltic pump capabilities. Biotechnol Bioeng. 2021;118:3128–37. https://doi.org/10.1002/bit.27836.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cyganek L, Tiburcy M, Sekeres K, Gerstenberg K, Bohnenberger H, Lenz C, Henze S, Stauske M, Salinas G, Zimmermann WH, et al. Deep phenotyping of human induced pluripotent stem cell-derived atrial and ventricular cardiomyocytes. JCI Insight. 2018;3(12):e99941. https://doi.org/10.1172/jci.insight.99941.

de Wit S, de Boer RA. From studying heart disease and cancer simultaneously to reverse cardio-oncology. Circulation. 2021;144:93–5. https://doi.org/10.1161/circulationaha.120.053315.

Article  PubMed  Google Scholar 

de Wit S, Glen C, de Boer RA, Lang NN. Mechanisms shared between cancer, heart failure, and targeted anti-cancer therapies. Cardiovasc Res. 2023;118:3451–66. https://doi.org/10.1093/cvr/cvac132.

Article  CAS  PubMed  Google Scholar 

Devalla HD, Schwach V, Ford JW, Milnes JT, El-Haou S, Jackson C, Gkatzis K, Elliott DA, de Chuva Sousa Lopes SM, Mummery CL, et al. Atrial-like cardiomyocytes from human pluripotent stem cells are a robust preclinical model for assessing atrial-selective pharmacology. EMBO Mol Med. 2015;7:394–410. https://doi.org/10.15252/emmm.201404757.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dubois NC, Craft AM, Sharma P, Elliott DA, Stanley EG, Elefanty AG, Gramolini A, Keller G. SIRPA is a specific cell-surface marker for isolating cardiomyocytes derived from human pluripotent stem cells. Nat Biotechnol. 2011;29:1011–8. https://doi.org/10.1038/nbt.2005.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Elliott DA, Braam SR, Koutsis K, Ng ES, Jenny R, Lagerqvist EL, Biben C, Hatzistavrou T, Hirst CE, Yu QC, et al. NKX2-5eGFP/w hESCs for isolation of human cardiac progenitors and cardiomyocytes. Nat Methods. 2011;8:1037–40. https://doi.org/10.1038/nmeth.1740.

Article  CAS  PubMed  Google Scholar 

Feric NT, Pallotta I, Singh R, Bogdanowicz DR, Gustilo M, Chaudhary K, Willette RN, Chendrimada T, Xu X, Graziano MP, Aschar-Sobbi R. Engineered cardiac tissues generated in the Biowire™ II: a platform for human-based drug discovery. Toxicol Sci: Off J Soc Toxicol. 2019;172:89–97. https://doi.org/10.1093/toxsci/kfz168.

Article  CAS  Google Scholar 

Feyen DAM, McKeithan WL, Bruyneel AAN, Spiering S, Hörmann L, Ulmer B, Zhang H, Briganti F, Schweizer M, Hegyi B, et al. Metabolic maturation media improve physiological function of human iPSC-derived cardiomyocytes. Cell Rep. 2020;32:107925. https://doi.org/10.1016/j.celrep.2020.107925.

Article  CAS  PubMed  Google Scholar 

Focaccetti C, Bruno A, Magnani E, Bartolini D, Principi E, Dallaglio K, Bucci EO, Finzi G, Sessa F, Noonan DM, Albini A. Effects of 5-fluorouracil on morphology, cell cycle, proliferation, apoptosis, autophagy and ROS production in endothelial cells and cardiomyocytes. PLoS ONE. 2015;10:e0115686. https://doi.org/10.1371/journal.pone.0115686.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Forghani P, Rashid A, Sun F, Liu R, Li D, Lee MR, Hwang H, Maxwell JT, Mandawat A, Wu R, et al. Carfilzomib treatment causes molecular and functional alterations of human induced pluripotent stem cell-derived cardiomyocytes. J Am Heart Assoc. 2021;10:e022247. https://doi.org/10.1161/jaha.121.022247.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fukushima H, Yoshioka M, Kawatou M, Lopez-Davila V, Takeda M, Kanda Y, Sekino Y, Yoshida Y, Yamashita JK. Specific induction and long-term maintenance of high purity ventricular cardiomyocytes from human induced pluripotent stem cells. PLoS ONE. 2020;15:e0241287. https://doi.org/10.1371/journal.pone.0241287.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gardin C, Ferroni L, Latremouille C, Chachques JC, Mitrecic D, Zavan B. Recent applications of three dimensional printing in cardiovascular medicine. Cells. 2020;9(3):742. https://doi.org/10.3390/cells9030742.

Article  CAS 

留言 (0)

沒有登入
gif