Fink HA, Wilt TJ, Eidman KE, Garimella PS, MacDonald R, Rutks IR, et al. Medical management to prevent recurrent nephrolithiasis in adults: a systematic review for an American college of physicians clinical guideline. Ann Intern Med. 2013;158(7):535–43. https://doi.org/10.7326/0003-4819-158-7-201304020-00005.
Nojaba L, Guzman N. Nephrolithiasis. StatPearls. Treasure Island (FL): StatPearls Publishing. Copyright © 2023, StatPearls Publishing LLC; 2023.
Khan SR, Pearle MS, Robertson WG, Gambaro G, Canales BK, Doizi S, et al. Kidney stones. Nat Rev Dis Primers. 2016;2:16008. https://doi.org/10.1038/nrdp.2016.8.
Article PubMed PubMed Central Google Scholar
Rule AD, Krambeck AE, Lieske JC. Chronic kidney disease in kidney stone formers. Clin J Am Soc Nephrol. 2011;6(8):2069–75. https://doi.org/10.2215/cjn.10651110.
Article PubMed PubMed Central Google Scholar
Boonla C, Krieglstein K, Bovornpadungkitti S, Strutz F, Spittau B, Predanon C, et al. Fibrosis and evidence for epithelial-mesenchymal transition in the kidneys of patients with staghorn calculi. BJU Int. 2011;108(8):1336–45. https://doi.org/10.1111/j.1464-410X.2010.10074.x.
Article CAS PubMed Google Scholar
Falke LL, Gholizadeh S, Goldschmeding R, Kok RJ, Nguyen TQ. Diverse origins of the myofibroblast—implications for kidney fibrosis. Nat Rev Nephrol. 2015;11(4):233–44. https://doi.org/10.1038/nrneph.2014.246.
Article CAS PubMed Google Scholar
Tang PM, Nikolic-Paterson DJ, Lan HY. Macrophages: versatile players in renal inflammation and fibrosis. Nat Rev Nephrol. 2019;15(3):144–58. https://doi.org/10.1038/s41581-019-0110-2.
Wang S, Meng XM, Ng YY, Ma FY, Zhou S, Zhang Y, et al. TGF-β/Smad3 signalling regulates the transition of bone marrow-derived macrophages into myofibroblasts during tissue fibrosis. Oncotarget. 2016;7(8):8809–22. https://doi.org/10.18632/oncotarget.6604.
Wang YY, Jiang H, Pan J, Huang XR, Wang YC, Huang HF, et al. Macrophage-to-myofibroblast transition contributes to interstitial fibrosis in chronic renal allograft injury. J Am Soc Nephrol. 2017;28(7):2053–67. https://doi.org/10.1681/asn.2016050573.
Article CAS PubMed PubMed Central Google Scholar
Tang PM, Zhang YY, Xiao J, Tang PC, Chung JY, Li J, et al. Neural transcription factor Pou4f1 promotes renal fibrosis via macrophage-myofibroblast transition. Proc Natl Acad Sci USA. 2020;117(34):20741–52. https://doi.org/10.1073/pnas.1917663117.
Article CAS PubMed PubMed Central Google Scholar
Chen J, Tang Y, Zhong Y, Wei B, Huang XR, Tang PM, et al. P2Y12 inhibitor clopidogrel inhibits renal fibrosis by blocking macrophage-to-myofibroblast transition. Mol Ther J Am Soc Gene Ther. 2022;30(9):3017–33. https://doi.org/10.1016/j.ymthe.2022.06.019.
Zeng H, Gao Y, Yu W, Liu J, Zhong C, Su X, et al. Pharmacological inhibition of STING/TBK1 signaling attenuates myeloid fibroblast activation and macrophage to myofibroblast transition in renal fibrosis. Front Pharmacol. 2022;13: 940716. https://doi.org/10.3389/fphar.2022.940716.
Article CAS PubMed PubMed Central Google Scholar
Mentz M, Keay W, Strobl CD, Antoniolli M, Adolph L, Heide M, et al. PARP14 is a novel target in STAT6 mutant follicular lymphoma. Leukemia. 2022;36(9):2281–92. https://doi.org/10.1038/s41375-022-01641-x.
Article CAS PubMed PubMed Central Google Scholar
Yang Y, Ma Y, Li Q, Ling Y, Zhou Y, Chu K, et al. STAT6 inhibits ferroptosis and alleviates acute lung injury via regulating P53/SLC7A11 pathway. Cell Death Dis. 2022;13(6):530. https://doi.org/10.1038/s41419-022-04971-x.
Article CAS PubMed PubMed Central Google Scholar
Yamashita M, Morio T. Germline STAT6 gain-of-function variants cause severe allergy. J Allergy Clin Immunol. 2023;151(5):1252–4. https://doi.org/10.1016/j.jaci.2023.03.007.
Article CAS PubMed Google Scholar
Jiao B, An C, Tran M, Du H, Wang P, Zhou D, et al. Pharmacological Inhibition of STAT6 ameliorates myeloid fibroblast activation and alternative macrophage polarization in renal fibrosis. Front Immunol. 2021;12: 735014. https://doi.org/10.3389/fimmu.2021.735014.
Article CAS PubMed PubMed Central Google Scholar
Huang C, Wang J, Liu H, Huang R, Yan X, Song M, et al. Ketone body β-hydroxybutyrate ameliorates colitis by promoting M2 macrophage polarization through the STAT6-dependent signaling pathway. BMC Med. 2022;20(1):148. https://doi.org/10.1186/s12916-022-02352-x.
Article CAS PubMed PubMed Central Google Scholar
Chiba Y, Todoroki M, Nishida Y, Tanabe M, Misawa M. A novel STAT6 inhibitor AS1517499 ameliorates antigen-induced bronchial hypercontractility in mice. Am J Respir Cell Mol Biol. 2009;41(5):516–24. https://doi.org/10.1165/rcmb.2008-0163OC.
Article CAS PubMed Google Scholar
Liang CL, Jiang H, Feng W, Liu H, Han L, Chen Y, et al. Total glucosides of paeony ameliorate pristane-induced lupus nephritis by inducing PD-1 ligands(+) macrophages via activating IL-4/STAT6/PD-L2 signaling. Front Immunol. 2021;12: 683249. https://doi.org/10.3389/fimmu.2021.683249.
Article CAS PubMed PubMed Central Google Scholar
Jiang X, Zha B, Liu X, Liu R, Liu J, Huang E, et al. STAT6 deficiency ameliorates Graves’ disease severity by suppressing thyroid epithelial cell hyperplasia. Cell Death Dis. 2016;7(12): e2506. https://doi.org/10.1038/cddis.2016.398.
Article CAS PubMed PubMed Central Google Scholar
Li J, Yang Y, Li Q, Wei S, Zhou Y, Yu W, et al. STAT6 contributes to renal fibrosis by modulating PPARα-mediated tubular fatty acid oxidation. Cell Death Dis. 2022;13(1):66. https://doi.org/10.1038/s41419-022-04515-3.
Article CAS PubMed PubMed Central Google Scholar
Chung KW, Dhillon P, Huang S, Sheng X, Shrestha R, Qiu C, et al. Mitochondrial damage and activation of the STING pathway lead to renal inflammation and fibrosis. Cell Metab. 2019;30(4):784-99.e5. https://doi.org/10.1016/j.cmet.2019.08.003.
Article CAS PubMed PubMed Central Google Scholar
Chung KW, Lee EK, Lee MK, Oh GT, Yu BP, Chung HY. Impairment of PPARα and the fatty acid oxidation pathway aggravates renal fibrosis during aging. J Am Soc Nephrol. 2018;29(4):1223–37. https://doi.org/10.1681/asn.2017070802.
Article CAS PubMed PubMed Central Google Scholar
Okada A, Nomura S, Higashibata Y, Hirose M, Gao B, Yoshimura M, et al. Successful formation of calcium oxalate crystal deposition in mouse kidney by intraabdominal glyoxylate injection. Urol Res. 2007;35(2):89–99. https://doi.org/10.1007/s00240-007-0082-8.
Article CAS PubMed Google Scholar
Ye Z, Xia Y, Zhou X, Li B, Yu W, Ruan Y, et al. CXCR4 inhibition attenuates calcium oxalate crystal deposition-induced renal fibrosis. Int Immunopharmacol. 2022;107: 108677. https://doi.org/10.1016/j.intimp.2022.108677.
Article CAS PubMed Google Scholar
Yan J, Zhang Z, Yang J, Mitch WE, Wang Y. JAK3/STAT6 stimulates bone marrow-derived fibroblast activation in renal fibrosis. J Am Soc Nephrol. 2015;26(12):3060–71. https://doi.org/10.1681/asn.2014070717.
Article CAS PubMed PubMed Central Google Scholar
Calle P, Torrico S, Muñoz A, Hotter G. CPT1a downregulation protects against cholesterol-induced fibrosis in tubular epithelial cells by downregulating TGFβ-1 and inflammasome. Biochem Biophys Res Commun. 2019;517(4):715–21. https://doi.org/10.1016/j.bbrc.2019.07.121.
Article CAS PubMed Google Scholar
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550. https://doi.org/10.1186/s13059-014-0550-8.
Article CAS PubMed PubMed Central Google Scholar
Tang PC, Chung JY, Xue VW, Xiao J, Meng XM, Huang XR, et al. Smad3 promotes cancer-associated fibroblasts generation via macrophage-myofibroblast transition. Adv Sci (Weinheim, Baden-Wurttemberg, Germany). 2022;9(1):e2101235. https://doi.org/10.1002/advs.202101235.
Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47(D1):D607–13. https://doi.org/10.1093/nar/gky1131.
Article CAS PubMed Google Scholar
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–504. https://doi.org/10.1101/gr.1239303.
Article CAS PubMed PubMed Central Google Scholar
Bader GD, Hogue CW. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinform. 2003;4:2. https://doi.org/10.1186/1471-2105-4-2.
Comments (0)