STAT6 promoting oxalate crystal deposition-induced renal fibrosis by mediating macrophage-to-myofibroblast transition via inhibiting fatty acid oxidation

Fink HA, Wilt TJ, Eidman KE, Garimella PS, MacDonald R, Rutks IR, et al. Medical management to prevent recurrent nephrolithiasis in adults: a systematic review for an American college of physicians clinical guideline. Ann Intern Med. 2013;158(7):535–43. https://doi.org/10.7326/0003-4819-158-7-201304020-00005.

Article  PubMed  Google Scholar 

Nojaba L, Guzman N. Nephrolithiasis. StatPearls. Treasure Island (FL): StatPearls Publishing. Copyright © 2023, StatPearls Publishing LLC; 2023.

Khan SR, Pearle MS, Robertson WG, Gambaro G, Canales BK, Doizi S, et al. Kidney stones. Nat Rev Dis Primers. 2016;2:16008. https://doi.org/10.1038/nrdp.2016.8.

Article  PubMed  PubMed Central  Google Scholar 

Rule AD, Krambeck AE, Lieske JC. Chronic kidney disease in kidney stone formers. Clin J Am Soc Nephrol. 2011;6(8):2069–75. https://doi.org/10.2215/cjn.10651110.

Article  PubMed  PubMed Central  Google Scholar 

Boonla C, Krieglstein K, Bovornpadungkitti S, Strutz F, Spittau B, Predanon C, et al. Fibrosis and evidence for epithelial-mesenchymal transition in the kidneys of patients with staghorn calculi. BJU Int. 2011;108(8):1336–45. https://doi.org/10.1111/j.1464-410X.2010.10074.x.

Article  CAS  PubMed  Google Scholar 

Falke LL, Gholizadeh S, Goldschmeding R, Kok RJ, Nguyen TQ. Diverse origins of the myofibroblast—implications for kidney fibrosis. Nat Rev Nephrol. 2015;11(4):233–44. https://doi.org/10.1038/nrneph.2014.246.

Article  CAS  PubMed  Google Scholar 

Tang PM, Nikolic-Paterson DJ, Lan HY. Macrophages: versatile players in renal inflammation and fibrosis. Nat Rev Nephrol. 2019;15(3):144–58. https://doi.org/10.1038/s41581-019-0110-2.

Article  PubMed  Google Scholar 

Wang S, Meng XM, Ng YY, Ma FY, Zhou S, Zhang Y, et al. TGF-β/Smad3 signalling regulates the transition of bone marrow-derived macrophages into myofibroblasts during tissue fibrosis. Oncotarget. 2016;7(8):8809–22. https://doi.org/10.18632/oncotarget.6604.

Article  PubMed  Google Scholar 

Wang YY, Jiang H, Pan J, Huang XR, Wang YC, Huang HF, et al. Macrophage-to-myofibroblast transition contributes to interstitial fibrosis in chronic renal allograft injury. J Am Soc Nephrol. 2017;28(7):2053–67. https://doi.org/10.1681/asn.2016050573.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tang PM, Zhang YY, Xiao J, Tang PC, Chung JY, Li J, et al. Neural transcription factor Pou4f1 promotes renal fibrosis via macrophage-myofibroblast transition. Proc Natl Acad Sci USA. 2020;117(34):20741–52. https://doi.org/10.1073/pnas.1917663117.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen J, Tang Y, Zhong Y, Wei B, Huang XR, Tang PM, et al. P2Y12 inhibitor clopidogrel inhibits renal fibrosis by blocking macrophage-to-myofibroblast transition. Mol Ther J Am Soc Gene Ther. 2022;30(9):3017–33. https://doi.org/10.1016/j.ymthe.2022.06.019.

Article  CAS  Google Scholar 

Zeng H, Gao Y, Yu W, Liu J, Zhong C, Su X, et al. Pharmacological inhibition of STING/TBK1 signaling attenuates myeloid fibroblast activation and macrophage to myofibroblast transition in renal fibrosis. Front Pharmacol. 2022;13: 940716. https://doi.org/10.3389/fphar.2022.940716.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mentz M, Keay W, Strobl CD, Antoniolli M, Adolph L, Heide M, et al. PARP14 is a novel target in STAT6 mutant follicular lymphoma. Leukemia. 2022;36(9):2281–92. https://doi.org/10.1038/s41375-022-01641-x.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang Y, Ma Y, Li Q, Ling Y, Zhou Y, Chu K, et al. STAT6 inhibits ferroptosis and alleviates acute lung injury via regulating P53/SLC7A11 pathway. Cell Death Dis. 2022;13(6):530. https://doi.org/10.1038/s41419-022-04971-x.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yamashita M, Morio T. Germline STAT6 gain-of-function variants cause severe allergy. J Allergy Clin Immunol. 2023;151(5):1252–4. https://doi.org/10.1016/j.jaci.2023.03.007.

Article  CAS  PubMed  Google Scholar 

Jiao B, An C, Tran M, Du H, Wang P, Zhou D, et al. Pharmacological Inhibition of STAT6 ameliorates myeloid fibroblast activation and alternative macrophage polarization in renal fibrosis. Front Immunol. 2021;12: 735014. https://doi.org/10.3389/fimmu.2021.735014.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huang C, Wang J, Liu H, Huang R, Yan X, Song M, et al. Ketone body β-hydroxybutyrate ameliorates colitis by promoting M2 macrophage polarization through the STAT6-dependent signaling pathway. BMC Med. 2022;20(1):148. https://doi.org/10.1186/s12916-022-02352-x.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chiba Y, Todoroki M, Nishida Y, Tanabe M, Misawa M. A novel STAT6 inhibitor AS1517499 ameliorates antigen-induced bronchial hypercontractility in mice. Am J Respir Cell Mol Biol. 2009;41(5):516–24. https://doi.org/10.1165/rcmb.2008-0163OC.

Article  CAS  PubMed  Google Scholar 

Liang CL, Jiang H, Feng W, Liu H, Han L, Chen Y, et al. Total glucosides of paeony ameliorate pristane-induced lupus nephritis by inducing PD-1 ligands(+) macrophages via activating IL-4/STAT6/PD-L2 signaling. Front Immunol. 2021;12: 683249. https://doi.org/10.3389/fimmu.2021.683249.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jiang X, Zha B, Liu X, Liu R, Liu J, Huang E, et al. STAT6 deficiency ameliorates Graves’ disease severity by suppressing thyroid epithelial cell hyperplasia. Cell Death Dis. 2016;7(12): e2506. https://doi.org/10.1038/cddis.2016.398.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li J, Yang Y, Li Q, Wei S, Zhou Y, Yu W, et al. STAT6 contributes to renal fibrosis by modulating PPARα-mediated tubular fatty acid oxidation. Cell Death Dis. 2022;13(1):66. https://doi.org/10.1038/s41419-022-04515-3.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chung KW, Dhillon P, Huang S, Sheng X, Shrestha R, Qiu C, et al. Mitochondrial damage and activation of the STING pathway lead to renal inflammation and fibrosis. Cell Metab. 2019;30(4):784-99.e5. https://doi.org/10.1016/j.cmet.2019.08.003.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chung KW, Lee EK, Lee MK, Oh GT, Yu BP, Chung HY. Impairment of PPARα and the fatty acid oxidation pathway aggravates renal fibrosis during aging. J Am Soc Nephrol. 2018;29(4):1223–37. https://doi.org/10.1681/asn.2017070802.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Okada A, Nomura S, Higashibata Y, Hirose M, Gao B, Yoshimura M, et al. Successful formation of calcium oxalate crystal deposition in mouse kidney by intraabdominal glyoxylate injection. Urol Res. 2007;35(2):89–99. https://doi.org/10.1007/s00240-007-0082-8.

Article  CAS  PubMed  Google Scholar 

Ye Z, Xia Y, Zhou X, Li B, Yu W, Ruan Y, et al. CXCR4 inhibition attenuates calcium oxalate crystal deposition-induced renal fibrosis. Int Immunopharmacol. 2022;107: 108677. https://doi.org/10.1016/j.intimp.2022.108677.

Article  CAS  PubMed  Google Scholar 

Yan J, Zhang Z, Yang J, Mitch WE, Wang Y. JAK3/STAT6 stimulates bone marrow-derived fibroblast activation in renal fibrosis. J Am Soc Nephrol. 2015;26(12):3060–71. https://doi.org/10.1681/asn.2014070717.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Calle P, Torrico S, Muñoz A, Hotter G. CPT1a downregulation protects against cholesterol-induced fibrosis in tubular epithelial cells by downregulating TGFβ-1 and inflammasome. Biochem Biophys Res Commun. 2019;517(4):715–21. https://doi.org/10.1016/j.bbrc.2019.07.121.

Article  CAS  PubMed  Google Scholar 

Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550. https://doi.org/10.1186/s13059-014-0550-8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tang PC, Chung JY, Xue VW, Xiao J, Meng XM, Huang XR, et al. Smad3 promotes cancer-associated fibroblasts generation via macrophage-myofibroblast transition. Adv Sci (Weinheim, Baden-Wurttemberg, Germany). 2022;9(1):e2101235. https://doi.org/10.1002/advs.202101235.

Article  CAS  Google Scholar 

Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47(D1):D607–13. https://doi.org/10.1093/nar/gky1131.

Article  CAS  PubMed  Google Scholar 

Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–504. https://doi.org/10.1101/gr.1239303.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bader GD, Hogue CW. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinform. 2003;4:2. https://doi.org/10.1186/1471-2105-4-2.

Article 

Comments (0)

No login
gif