Zhao D, et al. Epidemiology of cardiovascular disease in China: current features and implications. Nat Rev Cardiol. 2019;16(4):203–12.
Kivimäki M, Steptoe A. Effects of stress on the development and progression of cardiovascular disease. Nat Rev Cardiol. 2018;15(4):215–29.
Li Z, et al. Targeted anti-IL-1β platelet microparticles for cardiac detoxing and repair. Sci Adv. 2020;6(6):eaay0589.
Article CAS PubMed PubMed Central Google Scholar
Ikonomidis I, et al. Inhibition of interleukin-1 by anakinra improves vascular and left ventricular function in patients with rheumatoid arthritis. Circulation. 2008;117(20):2662–9.
Article CAS PubMed Google Scholar
Nakano A, et al. Cytokine gene therapy for myocarditis by in vivo electroporation. Hum Gene Ther. 2001;12(10):1289–97.
Article CAS PubMed Google Scholar
Yamada T, Matsumori A, Sasayama S. Therapeutic effect of anti-tumor necrosis factor-alpha antibody on the murine model of viral myocarditis induced by Encephalomyocarditis virus. Circulation. 1994;89(2):846–51.
Article CAS PubMed Google Scholar
Szalay G, et al. Sustained nitric oxide synthesis contributes to immunopathology in ongoing myocarditis attributable to interleukin-10 disorders. Am J Pathol. 2006;169(6):2085–93.
Article CAS PubMed PubMed Central Google Scholar
Kaur K, et al. Biology of TNFalpha and IL-10, and their imbalance in heart failure. Heart Fail Rev. 2009;14(2):113–23.
Article CAS PubMed Google Scholar
Yuan X, et al. Editorial: Purinergic Signaling and inflammation. Front Immunol. 2021;12:699069.
Article CAS PubMed PubMed Central Google Scholar
Zindel J, Kubes P. DAMPs, PAMPs, and LAMPs in immunity and sterile inflammation. Annu Rev Pathol. 2020;15:493–518.
Article CAS PubMed Google Scholar
Marchi S, et al. Mitochondrial control of inflammation. Nat Rev Immunol. 2023;23(3):159–73.
Article CAS PubMed Google Scholar
Garg M, Johri S, Chakraborty K. Immunomodulatory role of mitochondrial DAMPs: a missing link in pathology? Febs j. 2023;290(18):4395–418.
Article CAS PubMed Google Scholar
Vringer E, Tait SWG. Mitochondria and cell death-associated inflammation. Cell Death Differ. 2023;30(2):304–12.
Article CAS PubMed Google Scholar
Bock FJ, Tait SWG. Mitochondria as multifaceted regulators of cell death. Nat Rev Mol Cell Biol. 2020;21(2):85–100.
Article CAS PubMed Google Scholar
Nicholls TJ, Gustafsson CM. Separating and segregating the human mitochondrial genome. Trends Biochem Sci. 2018;43(11):869–81.
Article CAS PubMed Google Scholar
Xian H, et al. Oxidized DNA fragments exit mitochondria via mPTP- and VDAC-dependent channels to activate NLRP3 inflammasome and interferon signaling. Immunity. 2022;55(8):1370–e13858.
Article CAS PubMed PubMed Central Google Scholar
Alam K, Moinuddin, Jabeen S. Immunogenicity of mitochondrial DNA modified by hydroxyl radical. Cell Immunol. 2007;247(1):12–7.
Article CAS PubMed Google Scholar
Pazmandi K, et al. Oxidative modification enhances the immunostimulatory effects of extracellular mitochondrial DNA on plasmacytoid dendritic cells. Free Radic Biol Med. 2014;77:281–90.
Article CAS PubMed Google Scholar
Ishikawa K, et al. ROS-generating mitochondrial DNA mutations can regulate tumor cell metastasis. Science. 2008;320(5876):661–4.
Article CAS PubMed Google Scholar
Kujoth GC, et al. Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging. Science. 2005;309(5733):481–4.
Article CAS PubMed Google Scholar
McArthur K et al. BAK/BAX macropores facilitate mitochondrial herniation and mtDNA efflux during apoptosis. Science, 2018. 359(6378).
Riley JS et al. Mitochondrial inner membrane permeabilisation enables mtDNA release during apoptosis. Embo j, 2018. 37(17).
Patrushev M, et al. Release of mitochondrial DNA fragments from brain mitochondria of irradiated mice. Mitochondrion. 2006;6(1):43–7.
Article CAS PubMed Google Scholar
Kim J, et al. VDAC oligomers form mitochondrial pores to release mtDNA fragments and promote lupus-like disease. Science. 2019;366(6472):1531–6.
Article CAS PubMed PubMed Central Google Scholar
Huang LS, et al. mtDNA activates cGAS Signaling and suppresses the YAP-Mediated endothelial cell Proliferation Program to Promote Inflammatory Injury. Immunity. 2020;52(3):475–e4865.
Article CAS PubMed PubMed Central Google Scholar
Sliter DA, et al. Parkin and PINK1 mitigate STING-induced inflammation. Nature. 2018;561(7722):258–62.
Article CAS PubMed PubMed Central Google Scholar
Rodríguez-Nuevo A et al. Mitochondrial DNA and TLR9 drive muscle inflammation upon Opa1 deficiency. Embo j, 2018. 37(10).
Bueno M, et al. PINK1 attenuates mtDNA release in alveolar epithelial cells and TLR9 mediated profibrotic responses. PLoS ONE. 2019;14(6):e0218003.
Article CAS PubMed PubMed Central Google Scholar
Ishikawa H, Barber GN. STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature. 2008;455(7213):674–8.
Article CAS PubMed PubMed Central Google Scholar
Rongvaux A, et al. Apoptotic caspases prevent the induction of type I interferons by mitochondrial DNA. Cell. 2014;159(7):1563–77.
Article CAS PubMed PubMed Central Google Scholar
White MJ, et al. Apoptotic caspases suppress mtDNA-induced STING-mediated type I IFN production. Cell. 2014;159(7):1549–62.
Article CAS PubMed PubMed Central Google Scholar
Swanson KV, Deng M, Ting JP. The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat Rev Immunol. 2019;19(8):477–89.
Article CAS PubMed PubMed Central Google Scholar
Xian H, et al. Metformin inhibition of mitochondrial ATP and DNA synthesis abrogates NLRP3 inflammasome activation and pulmonary inflammation. Immunity. 2021;54(7):1463–e147711.
Article CAS PubMed PubMed Central Google Scholar
Zhong Z, et al. New mitochondria
Comments (0)