Pericytes mediate neuroinflammation via Fli-1 in endotoxemia and sepsis in mice

Di Bella D, Ferreira JPS, Silva RNO, Echem C, Milan A, Akamine EH, Carvalho MH, Rodrigues SF. Gold nanoparticles reduce inflammation in cerebral microvessels of mice with sepsis. J Nanobiotechnol. 2021;19:52.

Article  Google Scholar 

Ohm M, Hosseini S, Lonnemann N, He W, More T, Goldmann O, Medina E, Hiller K, Korte M. The potential therapeutic role of itaconate and mesaconate on the detrimental effects of LPS-induced neuroinflammation in the brain. J Neuroinflamm. 2024;21:207.

Article  CAS  Google Scholar 

Rudd KE, Kissoon N, Limmathurotsakul D, Bory S, Mutahunga B, Seymour CW, Angus DC, West TE. The global burden of sepsis: barriers and potential solutions. Crit Care. 2018;22:232.

Article  PubMed  PubMed Central  Google Scholar 

van der Poll T, van de Veerdonk FL, Scicluna BP, Netea MG. The immunopathology of sepsis and potential therapeutic targets. Nat Rev Immunol. 2017;17:407–20.

Article  PubMed  Google Scholar 

Wang P, Liang L, Ge Q, Liu S, Yang Z, Jiang L. Dichloroacetate attenuates brain injury through inhibiting neuroinflammation and mitochondrial fission in a rat model of sepsis-associated encephalopathy. Int Immunopharmacol. 2024;140: 112840.

Article  CAS  PubMed  Google Scholar 

Chaudhry N, Duggal AK. Sepsis associated encephalopathy. Adv Med. 2014;2014: 762320.

Article  PubMed  PubMed Central  Google Scholar 

Sonneville R, Benghanem S, Jeantin L, de Montmollin E, Doman M, Gaudemer A, Thy M, Timsit JF. The spectrum of sepsis-associated encephalopathy: a clinical perspective. Crit Care. 2023;27:386.

Article  PubMed  PubMed Central  Google Scholar 

Manabe T, Heneka MT. Cerebral dysfunctions caused by sepsis during ageing. Nat Rev Immunol. 2022;22:444–58.

Article  CAS  PubMed  Google Scholar 

Duan L, Zhang XD, Miao WY, Sun YJ, Xiong G, Wu Q, Li G, Yang P, Yu H, Li H, Wang Y, Zhang M, Hu LY, Tong X, Zhou WH, Yu X. PDGFRbeta cells rapidly relay inflammatory signal from the circulatory system to neurons via chemokine CCL2. Neuron. 2018;100(183–200): e8.

Google Scholar 

Johansson JU, Pradhan S, Lokteva LA, Woodling NS, Ko N, Brown HD, Wang Q, Loh C, Cekanaviciute E, Buckwalter M, Manning-Bog AB, Andreasson KI. Suppression of inflammation with conditional deletion of the prostaglandin E2 EP2 receptor in macrophages and brain microglia. J Neurosci. 2013;33:16016–32.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rafalski VA, Merlini M, Akassoglou K. Pericytes: The Brain’s Very First Responders? Neuron. 2018;100:11–3.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li P, Fan H. Pericyte loss in diseases. Cells. 2023;12:1931.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Moro M, Balestrero FC, Grolla AA. Pericytes: jack-of-all-trades in cancer-related inflammation. Front Pharmacol. 2024;15:1426033.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li P, Wu Y, Hamlett ED, Goodwin AJ, Halushka PV, Carroll SL, Liu M, Fan H. Suppression of Fli-1 protects against pericyte loss and cognitive deficits in Alzheimer’s disease. Mol Ther. 2022;30:1451–64.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hung CF, Mittelsteadt KL, Brauer R, McKinney BL, Hallstrand TS, Parks WC, Chen P, Schnapp LM, Liles WC, Duffield JS, Altemeier WA. Lung pericyte-like cells are functional interstitial immune sentinel cells. Am J Physiol Lung Cell Mol Physiol. 2017;312:L556–67.

Article  PubMed  PubMed Central  Google Scholar 

Rayner SG, Hung CF, Liles WC, Altemeier WA. Lung pericytes as mediators of inflammation. Am J Physiol Lung Cell Mol Physiol. 2023;325:L1–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wu Y, Li P, Goodwin AJ, Cook JA, Halushka PV, Zingarelli B, Fan H. miR-145a regulation of pericyte dysfunction in a murine model of sepsis. J Infect Dis. 2020;222:1037–45.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Takahashi T, Asano Y, Sugawara K, Yamashita T, Nakamura K, Saigusa R, Ichimura Y, Toyama T, Taniguchi T, Akamata K, Noda S, Yoshizaki A, Tsuruta D, Trojanowska M, Sato S. Epithelial Fli1 deficiency drives systemic autoimmunity and fibrosis: possible roles in scleroderma. J Exp Med. 2017;214:1129–51.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Theisen ER, Pishas KI, Saund RS, Lessnick SL. Therapeutic opportunities in Ewing sarcoma: EWS-FLI inhibition via LSD1 targeting. Oncotarget. 2016;7:17616–30.

Article  PubMed  PubMed Central  Google Scholar 

Akamata K, Asano Y, Yamashita T, Noda S, Taniguchi T, Takahashi T, Ichimura Y, Toyama T, Trojanowska M, Sato S. Endothelin receptor blockade ameliorates vascular fragility in endothelial cell-specific Fli-1-knockout mice by increasing Fli-1 DNA binding ability. Arthritis Rheumatol. 2015;67:1335–44.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Suzuki E, Karam E, Williams S, Watson DK, Gilkeson G, Zhang XK. Fli-1 transcription factor affects glomerulonephritis development by regulating expression of monocyte chemoattractant protein-1 in endothelial cells in the kidney. Clin Immunol. 2012;145:201–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sato S, Lennard Richard M, Brandon D, Jones Buie JN, Oates JC, Gilkeson GS, Zhang XK. A critical role of the transcription factor fli-1 in murine lupus development by regulation of interleukin-6 expression. Arthritis Rheumatol. 2014;66:3436–44.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lou N, Lennard Richard ML, Yu J, Kindy M, Zhang XK. The Fli-1 transcription factor is a critical regulator for controlling the expression of chemokine C-X-C motif ligand 2 (CXCL2). Mol Immunol. 2017;81:59–66.

Article  CAS  PubMed  Google Scholar 

Chasseigneaux S, Moraca Y, Cochois-Guegan V, Boulay AC, Gilbert A, Le Crom S, Blugeon C, Firmo C, Cisternino S, Laplanche JL, Curis E, Decleves X, Saubamea B. Isolation and differential transcriptome of vascular smooth muscle cells and mid-capillary pericytes from the rat brain. Sci Rep. 2018;8:12272.

Article  PubMed  PubMed Central  Google Scholar 

Guijarro-Munoz I, Compte M, Alvarez-Cienfuegos A, Alvarez-Vallina L, Sanz L. Lipopolysaccharide activates Toll-like receptor 4 (TLR4)-mediated NF-kappaB signaling pathway and proinflammatory response in human pericytes. J Biol Chem. 2014;289:2457–68.

Article  CAS  PubMed  Google Scholar 

Tanaka S, Portilla D, Okusa MD. Role of perivascular cells in kidney homeostasis, inflammation, repair and fibrosis. Nat Rev Nephrol. 2023;19:721–32.

Article  PubMed  Google Scholar 

Guo J, Loke J, Zheng F, Hong F, Yea S, Fukata M, Tarocchi M, Abar OT, Huang H, Sninsky JJ, Friedman SL. Functional linkage of cirrhosis-predictive single nucleotide polymorphisms of Toll-like receptor 4 to hepatic stellate cell responses. Hepatology. 2009;49:960–8.

Article  CAS  PubMed  Google Scholar 

Paik YH, Schwabe RF, Bataller R, Russo MP, Jobin C, Brenner DA. Toll-like receptor 4 mediates inflammatory signaling by bacterial lipopolysaccharide in human hepatic stellate cells. Hepatology. 2003;37:1043–55.

Article  CAS  PubMed  Google Scholar 

Seki E, De Minicis S, Osterreicher CH, Kluwe J, Osawa Y, Brenner DA, Schwabe RF. TLR4 enhances TGF-beta signaling and hepatic fibrosis. Nat Med. 2007;13:1324–32.

Article  CAS  PubMed  Google Scholar 

Lennard Richard ML, Nowling TK, Brandon D, Watson DK, Zhang XK. Fli-1 controls transcription from the MCP-1 gene promoter, which may provide a novel mechanism for chemokine and cytokine activation. Mol Immunol. 2015;63:566–73.

Comments (0)

No login
gif