De Boer IH, Rue TC, Hall YN, et al. Temporal trends in the prevalence of diabetic kidney disease in the United States. JAMA. 2011;305(24):2532–9. https://doi.org/10.1001/jama.2011.861.
Article PubMed PubMed Central Google Scholar
Alicic RZ, Rooney MT, Tuttle KR. Diabetic kidney disease: challenges, progress, and possibilities. Clin J Am Soc Nephrol. 2017;12(12):2032–45. https://doi.org/10.2215/cjn.11491116.
Article CAS PubMed PubMed Central Google Scholar
Zhang L, Long J, Jiang W, et al. Trends in chronic kidney disease in China. N Engl J Med. 2016;375(9):905–6. https://doi.org/10.1056/NEJMc1602469.
Niewczas MA, Pavkov ME, Skupien J, et al. A signature of circulating inflammatory proteins and development of end-stage renal disease in diabetes. Nat Med. 2019;25(5):805–13. https://doi.org/10.1038/s41591-019-0415-5.
Article CAS PubMed PubMed Central Google Scholar
Rayego-Mateos S, Morgado-Pascual JL, Opazo-Ríos L, et al. Pathogenic pathways and therapeutic approaches targeting inflammation in diabetic nephropathy. Int J Mol Sci. 2020;21(11):3798. https://doi.org/10.3390/ijms21113798.
Article CAS PubMed PubMed Central Google Scholar
Tang SCW, Yiu WH. Innate immunity in diabetic kidney disease. Nat Rev Nephrol. 2020;16(4):206–22. https://doi.org/10.1038/s41581-019-0234-4.
Article CAS PubMed Google Scholar
Chen J, Liu Q, He J, et al. Immune responses in diabetic nephropathy: Pathogenic mechanisms and therapeutic target. Front Immunol. 2022;13:958790. https://doi.org/10.3389/fimmu.2022.958790.
Article CAS PubMed PubMed Central Google Scholar
Moreno JA, Gomez-Guerrero C, Mas S, et al. Targeting inflammation in diabetic nephropathy: a tale of hope. Expert Opin Investig Drugs. 2018;27(11):917–30. https://doi.org/10.1080/13543784.2018.1538352.
Article CAS PubMed Google Scholar
Brinkmann V, Reichard U, Goosmann C, et al. Neutrophil extracellular traps kill bacteria. Science. 2004;303(5663):1532–5. https://doi.org/10.1126/science.1092385.
Article CAS PubMed Google Scholar
Jorch SK, Kubes P. An emerging role for neutrophil extracellular traps in noninfectious disease. Nat Med. 2017;23(3):279–87. https://doi.org/10.1038/nm.4294.
Article CAS PubMed Google Scholar
Czerwińska J, Owczarczyk-Saczonek A. The role of the neutrophilic network in the pathogenesis of psoriasis. Int J Mol Sci. 2022;23(3):1840. https://doi.org/10.3390/ijms23031840.
Article CAS PubMed PubMed Central Google Scholar
Keir HR, Chalmers JD. Neutrophil extracellular traps in chronic lung disease: implications for pathogenesis and therapy. Eur Respir Rev. 2022;31(163). https://doi.org/10.1183/16000617.0241-2021.
Juha M, Molnár A, Jakus Z, et al. NETosis: an emerging therapeutic target in renal diseases. Front Immunol. 2023;14:1253667. https://doi.org/10.3389/fimmu.2023.1253667.
Article CAS PubMed PubMed Central Google Scholar
Saffarzadeh M, Juenemann C, Queisser MA, et al. Neutrophil extracellular traps directly induce epithelial and endothelial cell death: a predominant role of histones. PLoS ONE. 2012;7(2):e32366. https://doi.org/10.1371/journal.pone.0032366.
Article CAS PubMed PubMed Central Google Scholar
Schoen J, Euler M, Schauer C, et al. Neutrophils' Extracellular Trap Mechanisms: From Physiology to Pathology. Int J Mol Sci. 2022;23(21). https://doi.org/10.3390/ijms232112855.
Hidalgo A, Libby P, Soehnlein O, et al. Neutrophil extracellular traps: from physiology to pathology. Cardiovasc Res. 2022;118(13):2737–53. https://doi.org/10.1093/cvr/cvab329.
Article CAS PubMed Google Scholar
Li X, Xiao S, Filipczak N, et al. Role and therapeutic targeting strategies of neutrophil extracellular traps in inflammation. Int J Nanomedicine. 2023;18:5265–87. https://doi.org/10.2147/ijn.s418259.
Article CAS PubMed PubMed Central Google Scholar
Zheng F, Ma L, Li X, et al. Neutrophil extracellular traps induce glomerular endothelial cell dysfunction and pyroptosis in diabetic kidney disease. Diabetes. 2022;71(12):2739–50. https://doi.org/10.2337/db22-0153.
Article CAS PubMed Google Scholar
Gupta A, Singh K, Fatima S, et al. Neutrophil extracellular traps promote NLRP3 inflammasome activation and glomerular endothelial dysfunction in diabetic kidney disease. Nutrients. 2022;14(14). https://doi.org/10.3390/nu14142965.
Leek JT, Johnson WE, Parker HS, et al. The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics. 2012;28(6):882–3. https://doi.org/10.1093/bioinformatics/bts034.
Article CAS PubMed PubMed Central Google Scholar
Wilson PC, Wu H, Kirita Y, et al. The single-cell transcriptomic landscape of early human diabetic nephropathy. Proc Natl Acad Sci U S A. 2019;116(39):19619–25. https://doi.org/10.1073/pnas.1908706116.
Article CAS PubMed PubMed Central Google Scholar
Muto Y, Wilson PC, Ledru N, et al. Single cell transcriptional and chromatin accessibility profiling redefine cellular heterogeneity in the adult human kidney. Nat Commun. 2021;12(1):2190. https://doi.org/10.1038/s41467-021-22368-w.
Article CAS PubMed PubMed Central Google Scholar
Balzer MS, Pavkovic M, Frederick J, et al. Treatment effects of soluble guanylate cyclase modulation on diabetic kidney disease at single-cell resolution. Cell Rep Med. 2023;4(4):100992. https://doi.org/10.1016/j.xcrm.2023.100992.
Article PubMed PubMed Central Google Scholar
Woroniecka KI, Park AS, Mohtat D, et al. Transcriptome analysis of human diabetic kidney disease. Diabetes. 2011;60(9):2354–69. https://doi.org/10.2337/db10-1181.
Article CAS PubMed PubMed Central Google Scholar
Pan Y, Jiang S, Hou Q, et al. Dissection of glomerular transcriptional profile in patients with diabetic nephropathy: SRGAP2a protects podocyte structure and function. Diabetes. 2018;67(4):717–30. https://doi.org/10.2337/db17-0755.
Article CAS PubMed Google Scholar
Grayson PC, Eddy S, Taroni JN, et al. Metabolic pathways and immunometabolism in rare kidney diseases. Ann Rheum Dis. 2018;77(8):1226–33. https://doi.org/10.1136/annrheumdis-2017-212935.
Article CAS PubMed Google Scholar
Martini S, Nair V, Keller BJ, et al. Integrative biology identifies shared transcriptional networks in CKD. J Am Soc Nephrol. 2014;25(11):2559–72. https://doi.org/10.1681/asn.2013080906.
Article CAS PubMed PubMed Central Google Scholar
Fan Y, Yi Z, D’agati VD, et al. Comparison of kidney transcriptomic profiles of early and advanced diabetic nephropathy reveals potential new mechanisms for disease progression. Diabetes. 2019;68(12):2301–14. https://doi.org/10.2337/db19-0204.
Article CAS PubMed PubMed Central Google Scholar
Wilson PC, Muto Y, Wu H, et al. Multimodal single cell sequencing implicates chromatin accessibility and genetic background in diabetic kidney disease progression. Nat Commun. 2022;13(1):5253. https://doi.org/10.1038/s41467-022-32972-z.
Comments (0)