IL-33, a neutrophil extracellular trap-related gene involved in the progression of diabetic kidney disease

De Boer IH, Rue TC, Hall YN, et al. Temporal trends in the prevalence of diabetic kidney disease in the United States. JAMA. 2011;305(24):2532–9. https://doi.org/10.1001/jama.2011.861.

Article  PubMed  PubMed Central  Google Scholar 

Alicic RZ, Rooney MT, Tuttle KR. Diabetic kidney disease: challenges, progress, and possibilities. Clin J Am Soc Nephrol. 2017;12(12):2032–45. https://doi.org/10.2215/cjn.11491116.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang L, Long J, Jiang W, et al. Trends in chronic kidney disease in China. N Engl J Med. 2016;375(9):905–6. https://doi.org/10.1056/NEJMc1602469.

Article  PubMed  Google Scholar 

Niewczas MA, Pavkov ME, Skupien J, et al. A signature of circulating inflammatory proteins and development of end-stage renal disease in diabetes. Nat Med. 2019;25(5):805–13. https://doi.org/10.1038/s41591-019-0415-5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rayego-Mateos S, Morgado-Pascual JL, Opazo-Ríos L, et al. Pathogenic pathways and therapeutic approaches targeting inflammation in diabetic nephropathy. Int J Mol Sci. 2020;21(11):3798. https://doi.org/10.3390/ijms21113798.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tang SCW, Yiu WH. Innate immunity in diabetic kidney disease. Nat Rev Nephrol. 2020;16(4):206–22. https://doi.org/10.1038/s41581-019-0234-4.

Article  CAS  PubMed  Google Scholar 

Chen J, Liu Q, He J, et al. Immune responses in diabetic nephropathy: Pathogenic mechanisms and therapeutic target. Front Immunol. 2022;13:958790. https://doi.org/10.3389/fimmu.2022.958790.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Moreno JA, Gomez-Guerrero C, Mas S, et al. Targeting inflammation in diabetic nephropathy: a tale of hope. Expert Opin Investig Drugs. 2018;27(11):917–30. https://doi.org/10.1080/13543784.2018.1538352.

Article  CAS  PubMed  Google Scholar 

Brinkmann V, Reichard U, Goosmann C, et al. Neutrophil extracellular traps kill bacteria. Science. 2004;303(5663):1532–5. https://doi.org/10.1126/science.1092385.

Article  CAS  PubMed  Google Scholar 

Jorch SK, Kubes P. An emerging role for neutrophil extracellular traps in noninfectious disease. Nat Med. 2017;23(3):279–87. https://doi.org/10.1038/nm.4294.

Article  CAS  PubMed  Google Scholar 

Czerwińska J, Owczarczyk-Saczonek A. The role of the neutrophilic network in the pathogenesis of psoriasis. Int J Mol Sci. 2022;23(3):1840. https://doi.org/10.3390/ijms23031840.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Keir HR, Chalmers JD. Neutrophil extracellular traps in chronic lung disease: implications for pathogenesis and therapy. Eur Respir Rev. 2022;31(163). https://doi.org/10.1183/16000617.0241-2021.

Juha M, Molnár A, Jakus Z, et al. NETosis: an emerging therapeutic target in renal diseases. Front Immunol. 2023;14:1253667. https://doi.org/10.3389/fimmu.2023.1253667.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Saffarzadeh M, Juenemann C, Queisser MA, et al. Neutrophil extracellular traps directly induce epithelial and endothelial cell death: a predominant role of histones. PLoS ONE. 2012;7(2):e32366. https://doi.org/10.1371/journal.pone.0032366.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schoen J, Euler M, Schauer C, et al. Neutrophils' Extracellular Trap Mechanisms: From Physiology to Pathology. Int J Mol Sci. 2022;23(21). https://doi.org/10.3390/ijms232112855.

Hidalgo A, Libby P, Soehnlein O, et al. Neutrophil extracellular traps: from physiology to pathology. Cardiovasc Res. 2022;118(13):2737–53. https://doi.org/10.1093/cvr/cvab329.

Article  CAS  PubMed  Google Scholar 

Li X, Xiao S, Filipczak N, et al. Role and therapeutic targeting strategies of neutrophil extracellular traps in inflammation. Int J Nanomedicine. 2023;18:5265–87. https://doi.org/10.2147/ijn.s418259.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zheng F, Ma L, Li X, et al. Neutrophil extracellular traps induce glomerular endothelial cell dysfunction and pyroptosis in diabetic kidney disease. Diabetes. 2022;71(12):2739–50. https://doi.org/10.2337/db22-0153.

Article  CAS  PubMed  Google Scholar 

Gupta A, Singh K, Fatima S, et al. Neutrophil extracellular traps promote NLRP3 inflammasome activation and glomerular endothelial dysfunction in diabetic kidney disease. Nutrients. 2022;14(14). https://doi.org/10.3390/nu14142965.

Leek JT, Johnson WE, Parker HS, et al. The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics. 2012;28(6):882–3. https://doi.org/10.1093/bioinformatics/bts034.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wilson PC, Wu H, Kirita Y, et al. The single-cell transcriptomic landscape of early human diabetic nephropathy. Proc Natl Acad Sci U S A. 2019;116(39):19619–25. https://doi.org/10.1073/pnas.1908706116.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Muto Y, Wilson PC, Ledru N, et al. Single cell transcriptional and chromatin accessibility profiling redefine cellular heterogeneity in the adult human kidney. Nat Commun. 2021;12(1):2190. https://doi.org/10.1038/s41467-021-22368-w.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Balzer MS, Pavkovic M, Frederick J, et al. Treatment effects of soluble guanylate cyclase modulation on diabetic kidney disease at single-cell resolution. Cell Rep Med. 2023;4(4):100992. https://doi.org/10.1016/j.xcrm.2023.100992.

Article  PubMed  PubMed Central  Google Scholar 

Woroniecka KI, Park AS, Mohtat D, et al. Transcriptome analysis of human diabetic kidney disease. Diabetes. 2011;60(9):2354–69. https://doi.org/10.2337/db10-1181.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pan Y, Jiang S, Hou Q, et al. Dissection of glomerular transcriptional profile in patients with diabetic nephropathy: SRGAP2a protects podocyte structure and function. Diabetes. 2018;67(4):717–30. https://doi.org/10.2337/db17-0755.

Article  CAS  PubMed  Google Scholar 

Grayson PC, Eddy S, Taroni JN, et al. Metabolic pathways and immunometabolism in rare kidney diseases. Ann Rheum Dis. 2018;77(8):1226–33. https://doi.org/10.1136/annrheumdis-2017-212935.

Article  CAS  PubMed  Google Scholar 

Martini S, Nair V, Keller BJ, et al. Integrative biology identifies shared transcriptional networks in CKD. J Am Soc Nephrol. 2014;25(11):2559–72. https://doi.org/10.1681/asn.2013080906.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fan Y, Yi Z, D’agati VD, et al. Comparison of kidney transcriptomic profiles of early and advanced diabetic nephropathy reveals potential new mechanisms for disease progression. Diabetes. 2019;68(12):2301–14. https://doi.org/10.2337/db19-0204.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wilson PC, Muto Y, Wu H, et al. Multimodal single cell sequencing implicates chromatin accessibility and genetic background in diabetic kidney disease progression. Nat Commun. 2022;13(1):5253. https://doi.org/10.1038/s41467-022-32972-z.

Article  CAS  PubMed  PubMed Central 

Comments (0)

No login
gif