The role of NLRP3 inflammasome-mediated pyroptosis in astrocytes during hyperoxia-induced brain injury

Lithopoulos MA, Toussay X, Zhong S, Xu L, Mustafa SB, Ouellette J, et al. Neonatal hyperoxia in mice triggers long-term cognitive deficits via impairments in cerebrovascular function and neurogenesis. J Clin Invest. 2022. https://doi.org/10.1172/jci146095.

Article  PubMed  PubMed Central  Google Scholar 

Demiselle J, Calzia E, Hartmann C, Messerer DAC, Asfar P, Radermacher P, et al. Target arterial PO(2) according to the underlying pathology: a mini-review of the available data in mechanically ventilated patients. Ann Intensive Care. 2021;11(1):88. https://doi.org/10.1186/s13613-021-00872-y.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Singer M, Young PJ, Laffey JG, Asfar P, Taccone FS, Skrifvars MB, et al. Dangers of hyperoxia. Crit Care (Lond, Engl). 2021;25(1):440. https://doi.org/10.1186/s13054-021-03815-y.

Article  Google Scholar 

Frantz AM, Fahy BG. Oxygen: can you have too much of a good thing? J Clin Anesth. 2021;74:110405. https://doi.org/10.1016/j.jclinane.2021.110405.

Article  PubMed  Google Scholar 

Perrone S, Bracciali C, Di Virgilio N, Buonocore G. Oxygen use in neonatal care: a two-edged sword. Front Pediatr. 2016;4:143. https://doi.org/10.3389/fped.2016.00143.

Article  PubMed  Google Scholar 

Meléndez J, Maldonado V, Bingle CD, Selman M, Pardo A. Cloning and expression of guinea pig TIMP-2. Expression in normal and hyperoxic lung injury. Am J Physiol Lung Cell Mol Physiol. 2000;278(4):L737–43. https://doi.org/10.1152/ajplung.2000.278.4.L737.

Article  PubMed  Google Scholar 

Deliyanti D, Lee JY, Petratos S, Meyer CJ, Ward KW, Wilkinson-Berka JL, et al. A potent Nrf2 activator, dh404, bolsters antioxidant capacity in glial cells and attenuates ischaemic retinopathy. Clin Sci (Lond). 2016;130(15):1375–87. https://doi.org/10.1042/cs20160068.

Article  CAS  PubMed  Google Scholar 

Miyamoto O, Auer RN. Hypoxia, hyperoxia, ischemia, and brain necrosis. Neurology. 2000;54(2):362–71. https://doi.org/10.1212/wnl.54.2.362.

Article  CAS  PubMed  Google Scholar 

Alva R, Mirza M, Baiton A, Lazuran L, Samokysh L, Bobinski A, et al. Oxygen toxicity: cellular mechanisms in normobaric hyperoxia. Cell Biol Toxicol. 2023;39(1):111–43. https://doi.org/10.1007/s10565-022-09773-7.

Article  CAS  PubMed  Google Scholar 

Hazelton JL, Balan I, Elmer GI, Kristian T, Rosenthal RE, Krause G, et al. Hyperoxic reperfusion after global cerebral ischemia promotes inflammation and long-term hippocampal neuronal death. J Neurotrauma. 2010;27(4):753–62. https://doi.org/10.1089/neu.2009.1186.

Article  PubMed  PubMed Central  Google Scholar 

Li S, Sun Y, Song M, Song Y, Fang Y, Zhang Q, et al. NLRP3/caspase-1/GSDMD-mediated pyroptosis exerts a crucial role in astrocyte pathological injury in mouse model of depression. JCI Insight. 2021. https://doi.org/10.1172/jci.insight.146852.

Article  PubMed  PubMed Central  Google Scholar 

Micili SC, Engür D, Genc S, Ercan I, Soy S, Baysal B, et al. Oxygen exposure in early life activates NLRP3 inflammasome in mouse brain. Neurosci Lett. 2020;738:135389. https://doi.org/10.1016/j.neulet.2020.135389.

Article  CAS  PubMed  Google Scholar 

Sunshine MD, Bindi VE, Nguyen BL, Doerr V, Boeno FP, Chandran V, et al. Oxygen therapy attenuates neuroinflammation after spinal cord injury. J Neuroinflamm. 2023;20(1):303. https://doi.org/10.1186/s12974-023-02985-6.

Article  CAS  Google Scholar 

Claxton S, Fruttiger M. Role of arteries in oxygen induced vaso-obliteration. Exp Eye Res. 2003;77(3):305–11. https://doi.org/10.1016/s0014-4835(03)00153-2.

Article  CAS  PubMed  Google Scholar 

Pietrucha A, Serdar M, Bendix I, Endesfelder S, Brinke EAD, Urkola A, et al. Oxygen and HIF1α-dependent SDF1 expression in primary astrocytes. Dev Neurobiol. 2024. https://doi.org/10.1002/dneu.22938.

Article  PubMed  Google Scholar 

Shi JZ, Zheng XM, Zhou YF, Yun LY, Luo DM, Hao JJ, et al. Cornuside is a potential agent against Alzheimer’s disease via orchestration of reactive astrocytes. Nutrients. 2022. https://doi.org/10.3390/nu14153179.

Article  PubMed  PubMed Central  Google Scholar 

Sui Y, Bian L, Ai Q, Yao Y, Yu M, Gao H, et al. Gastrodin inhibits inflammasome through the STAT3 signal pathways in TNA2 astrocytes and reactive astrocytes in experimentally induced cerebral ischemia in rats. Neuromol Med. 2019;21(3):275–86. https://doi.org/10.1007/s12017-019-08544-8.

Article  CAS  Google Scholar 

Angelova PR, Myers I, Abramov AY. Carbon monoxide neurotoxicity is triggered by oxidative stress induced by ROS production from three distinct cellular sources. Redox Biol. 2023;60:102598. https://doi.org/10.1016/j.redox.2022.102598.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen Y, Qin C, Huang J, Tang X, Liu C, Huang K, et al. The role of astrocytes in oxidative stress of central nervous system: a mixed blessing. Cell Prolif. 2020;53(3):e12781. https://doi.org/10.1111/cpr.12781.

Article  PubMed  PubMed Central  Google Scholar 

Verkhratsky A, Nedergaard M. Physiology of astroglia. Physiol Rev. 2018;98(1):239–389. https://doi.org/10.1152/physrev.00042.2016.

Article  CAS  PubMed  Google Scholar 

Lee HG, Wheeler MA, Quintana FJ. Function and therapeutic value of astrocytes in neurological diseases. Nat Rev Drug Discov. 2022;21(5):339–58. https://doi.org/10.1038/s41573-022-00390-x.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mori H, Oikawa M, Tamagami T, Kumaki H, Nakaune R, Amano J, et al. Oxidized proteins in astrocytes generated in a hyperbaric atmosphere induce neuronal apoptosis. J Alzheimers Dis. 2007;11(2):165–74. https://doi.org/10.3233/jad-2007-11204.

Article  CAS  PubMed  Google Scholar 

Söderfeldt B, Blennow G, Kalimo H, Olsson Y, Siesjö BK. Influence of systemic factors on experimental epileptic brain injury. Structural changes accompanying bicuculline-induced seizures in rats following manipulations of tissue oxygenation or alpha-tocopherol levels. Acta Neuropathol. 1983;60(1–2):81–91. https://doi.org/10.1007/bf00685351.

Article  PubMed  Google Scholar 

Yuan Y, Liu H, Dai Z, He C, Qin S, Su Z. From physiology to pathology of astrocytes: highlighting their potential as therapeutic targets for CNS injury. Neurosci Bull. 2024. https://doi.org/10.1007/s12264-024-01258-3.

Article  PubMed  PubMed Central  Google Scholar 

Valles SL, Singh SK, Campos-Campos J, Colmena C, Campo-Palacio I, Alvarez-Gamez K, et al. Functions of astrocytes under normal conditions and after a brain disease. Int J Mol Sci. 2023;24(9):8434. https://doi.org/10.3390/ijms24098434.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee H-G, Wheeler MA, Quintana FJ. Function and therapeutic value of astrocytes in neurological diseases. Nat Rev Drug Discov. 2022;21(5):339–58. https://doi.org/10.1038/s41573-022-00390-x.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Damiani E, Donati A, Girardis M. Oxygen in the critically ill: friend or foe? Curr Opin Anaesthesiol. 2018;31(2):129–35. https://doi.org/10.1097/aco.0000000000000559.

Article  CAS  PubMed  Google Scholar 

Habtemariam S. Modulation of reactive oxygen species in health and disease. Antioxidants (Basel). 2019. https://doi.org/10.3390/antiox8110513.

Article  PubMed  Google Scholar 

Wang J, Jiang C, Zhang K, Lan X, Chen X, Zang W, et al. Melatonin receptor activation provides cerebral protection after traumatic brain injury by mitigating oxidative stress and inflammation via the Nrf2 signaling pathway. Free Radic Biol Med. 2019;131:345–55. https://doi.org/10.1016/j.freeradbiomed.2018.12.014.

Comments (0)

No login
gif