Wen Z, Xioamei L, Dong X, Dongzhou L, Jian X, Futao Z, et al. Guidelines for diagnosis and treatment of primary Sjögren’s syndrome. Chin J Intern Med. 2020;59(4):269–76. https://doi.org/10.3760/cma.j.cn112138-20200113-00021. (in Chinese).
Segal BM, Nazmul-Hossain AN, Patel K, Hughes P, Moser KL, Rhodus NL. Genetics and genomics of Sjögren’s syndrome: research provides clues to pathogenesis and novel therapies. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2011;111(6):673–80. https://doi.org/10.1016/j.tripleo.2011.01.040. (Epub 2011 Apr 16. PMID: 21497524; PMCID: PMC3095716).
Article PubMed PubMed Central Google Scholar
Jianguo W. Sjögren’s syndrome. J Clin Lab. 2022;40(02):138–40. https://doi.org/10.13602/j.cnki.jcls.2022.02.14. (in Chinese).
Dan M, Helin Y, Zewen W, Yazhen S, Liyun Z. Research progress of mesenchymal stem cells and their extracellular vesicles in the treatment of Sjögren’s syndrome. Chin J Rheumatol. 2020;24(09):634–7. https://doi.org/10.3760/cma.j.c141217-20190430-00153. (in Chinese).
Versura P, Giannaccare G, Vukatana G, Mulè R, Malavolta N, Campos EC. Predictive role of tear protein expression in the early diagnosis of Sjögren’s syndrome. Ann Clin Biochem. 2018;55(5):561–70. https://doi.org/10.1177/0004563217750679. (Epub 2018 Jan 30. PMID: 29310465).
Article CAS PubMed Google Scholar
Beckman KA, Luchs J, Milner MS. Making the diagnosis of Sjögren’s syndrome in patients with dry eye. Clin Ophthalmol. 2016;10:43–53. https://doi.org/10.2147/opth.s80043. (Epub 2015 Dec 24 PMID: 26766898; PMCID: PMC4699514).
Article CAS PubMed Google Scholar
Skarlis C, Marketos N, Mavragani CP. Biologics in Sjögren’s syndrome. Pharmacol Res. 2019;147: 104389. https://doi.org/10.1016/j.phrs.2019.104389. (Epub 2019 Aug 12. PMID: 31415917).
Article CAS PubMed Google Scholar
Xiaowen Y, Qin W, Shikai Y, Bin W. Application and thinking of omics technology in the study of Sjögren’s syndrome. Chin J Immunol. 2021;37(15):1895–901. https://doi.org/10.3969/j.issn.1000-484X.2021.15.020.(InChinese).
Gallo A, Baldini C, Teos L, Mosca M, Bombardieri S, Alevizos I. Emerging trends in Sjögren’s syndrome: basic and translational research. Clin Exp Rheumatol. 2012;30(5):779–84 (Epub 2012 Oct 17. PMID: 23009759).
Castro-Santos P, Laborde CM, Diaz-Pena R. Genomics, proteomics and metabolomics: their emerging roles in the discovery and validation of rheumatoid arthritis biomarkers. Clin Exp Rheumatol. 2015;33(2):279–86 (Epub 2015 Jan 8. PMID: 25572119).
Kimoto O, Sawada J, Shimoyama K, Suzuki D, Nakamura S, Hayashi H, et al. Activation of the interferon pathway in peripheral blood of patients with Sjögren’s syndrome. J Rheumatol. 2011;38(2):310–6. https://doi.org/10.3899/jrheum.100486. (Epub 2010 Nov 15. PMID: 21078725).
Article CAS PubMed Google Scholar
Lei S, Zhang Y. Identification of the key genes and pathways involved in B cells in primary Sjögren’s syndrome. Bioengineered. 2021;12(1):2055–73. https://doi.org/10.1080/21655979.2021.1930753. (PMID: 34034637; PMCID: PMC8806908).
Article CAS PubMed PubMed Central Google Scholar
Lu C, Pi X, Xu W, Qing P, Tang H, Li Y, et al. Clinical significance of T cell receptor repertoire in primary Sjögren’s syndrome. EBioMedicine. 2022;84: 104252. https://doi.org/10.1016/j.ebiom.2022.104252. (Epub 2022 Sep 9. PMID: 36088685; PMCID: PMC9471496).
Article CAS PubMed PubMed Central Google Scholar
Hjelmervik TO, Petersen K, Jonassen I, Jonsson R, Bolstad AI. Gene expression profiling of minor salivary glands clearly distinguishes primary Sjögren’s syndrome patients from healthy control subjects. Arthritis Rheum. 2005;52(5):1534–44. https://doi.org/10.1002/art.21006. (PMID: 15880807).
Article CAS PubMed Google Scholar
Imgenberg-Kreuz J, Rasmussen A, Sivils K, Nordmark G. Genetics and epigenetics in primary Sjögren’s syndrome. Rheumatology (Oxford). 2021;60(5):2085–98. https://doi.org/10.1093/rheumatology/key330. (PMID: 30770922; PMCID: PMC8121440).
Article CAS PubMed Google Scholar
Brække-Norheim K, Imgenberg-Kreuz J, Jonsdottir K, Janssen EA, Syvänen AC, Sandling JK, et al. Epigenome-wide DNA methylation patterns associated with fatigue in primary Sjögren’s syndrome. Rheumatology (Oxford). 2016;55(6):1074–82. https://doi.org/10.1093/rheumatology/kew008. (Epub 2016 Mar 10. PMID: 26966136).
Article CAS PubMed Google Scholar
Imgenberg-Kreuz J, Almlöf JC, Leonard D, Sjöwall C, Syvänen AC, Rönnblom L, et al. Shared and unique patterns of DNA methylation in systemic lupus erythematosus and primary Sjögren’s syndrome. Front Immunol. 2019;30(10):1686. https://doi.org/10.3389/fimmu. (PMID: 31428085; PMCID: PMC6688520).
Luo X, Peng Y, Chen YY, Wang AQ, Deng CW, Peng LY, et al. Genome-wide DNA methylation patterns in monocytes derived from patients with primary Sjögren’s syndrome. Chin Med J (Engl). 2021;134(11):1310–6. https://doi.org/10.1097/CM9.0000000000001451. (PMID: 33769968; PMCID: PMC8183694).
Article CAS PubMed Google Scholar
Miceli-Richard C, Wang-Renault SF, Boudaoud S, Busato F, Lallemand C, Bethune K, et al. Overlap between differentially methylated DNA regions in blood B lymphocytes and genetic at-risk loci in primary Sjögren’s syndrome. Ann Rheum Dis. 2016;75(5):933–40. https://doi.org/10.1136/annrheumdis-2014-206998. (Epub 2015 Jul 16. PMID: 26183421; PMCID: PMC4853580).
Article CAS PubMed Google Scholar
Charras A, Konsta OD, Le-Dantec C, Bagacean C, Kapsogeorgou EK, Tzioufas AG, et al. Cell-specific epigenome-wide DNA methylation profile in long-term cultured minor salivary gland epithelial cells from patients with Sjögren’s syndrome. Ann Rheum Dis. 2017;76(3):625–8. https://doi.org/10.1136/annrheumdis-2016-210167. (Epub 2017 Jan 16. PMID: 28093418).
Article CAS PubMed Google Scholar
Imgenberg-Kreuz J, Sandling JK, Almlöf JC, Nordlund J, Signér L, Norheim KB, et al. Genome-wide DNA methylation analysis in multiple tissues in primary Sjögren’s syndrome reveals regulatory effects at interferon-induced genes. Ann Rheum Dis. 2016;75(11):2029–36. https://doi.org/10.1136/annrheumdis-2015-208659. (Epub 2016 Feb 8. PMID: 268576; PMCID: PMC5099203).
Article CAS PubMed Google Scholar
Spachidou MP, Bourazopoulou E, Maratheftis CI, Kapsogeorgou EK, Moutsopoulos HM, Tzioufas AG, et al. Expression of functional toll-like receptors by salivary gland epithelial cells: increased mRNA expression in cells derived from patients with primary Sjögren’s syndrome. Clin Exp Immunol. 2007;147(3):497–503. https://doi.org/10.1111/j.1365-2249.2006.03311.x. (PMID: 17302899;PMCID: PMC1810489).
Article CAS PubMed PubMed Central Google Scholar
Wildenberg ME, Welzen-Coppens JM, Van Helden-Meeuwsen CG, Bootsma H, Vissink A, van Rooijen N, et al. Increased frequency of CD16+ monocytes and the presence of activated dendritic cells in salivary glands in primary Sjögren’s syndrome. Ann Rheum Dis. 2009;68(3):420–6. https://doi.org/10.1136/ard.2008.087874. (Epub 2008 Apr 8. PMID: 18397959).
Article CAS PubMed Google Scholar
Witas R, Gupta S, Nguyen CQ. Contributions of major cell populations to Sjögren’s syndrome. J Clin Med. 2020;9(9):3057. https://doi.org/10.3390/jcm9093057. (PMID: 32971904IF; PMCID: PMC7564211).
Article CAS PubMed PubMed Central Google Scholar
Shi C, Pamer EG. Monocyte recruitment during infection and inflammation. Nat Rev Immunol. 2011;11(11):762–74. https://doi.org/10.1038/nri3070. (PMID: 21984070; PMCID: PMC3947780).
Article CAS PubMed PubMed Central Google Scholar
Jakubzick C, Gautier EL, Gibbings SL, Sojka DK, Schlitzer A, Johnson TE, et al. Minimal differentiation of classical monocytes as they survey steadystate tissues and transport antigen to lymph nodes. Immunity. 2013;39(3):599–610. https://doi.org/10.1016/j.immuni. (Epub 2013 Sep 5. PMID: 24012416; PMCID: PMC3820017).
Article CAS PubMed Google Scholar
Wang Y, Xie X, Zhang C, Su M, Gao S, Wang J, et al. Rheumatoid arthritis, systemic lupus erythematosus and primary Sjögren’s syndrome shared megakaryocyte expansion in peripheral blood. Ann Rheum Dis. 2022;81(3):379–85. https://doi.org/10.1136/annrheumdis-2021-220066. (Epub 2021 Aug 30. PMID: 34462261; PMCID: PMC8862024).
Article CAS PubMed Google Scholar
Lopes AP, Bekker CPJ, Hillen MR, Blokland SLM, Hinrichs AC, Pandit A, et al. The transcriptomic profile of monocytes from patients with Sjögren’s syndrome is associated with inflammatory parameters and is mimicked by circulating mediators. Front Immunol. 2021;3(12): 701656. https://doi.org/10.3389/fimmu.2021.701656. (PMID: 3441385; PMCID: PMC836872).
Williams AE, Choi K, Chan AL, Lee YJ, Reeves WH, Bubb MR, et al. Sjögren’s syndrome-associated microRNAs in CD14(+) monocytes unveils targeted TGFβ signaling. Arthritis Res Ther. 2016;18(1):95. https://doi.org/10.1186/s13075-016-0987-0. (PMID: 27142093; PMCID: PMC4855899).
Article CAS PubMed PubMed Central Google Scholar
Hillen MR, Pandit A, Blokland SLM, Hartgring SAY, Bekker CPJ, van der Heijden EHM, et al. Plasmacytoid DCs from patients with Sjögren’s syndrome are transcriptionally primed for enhanced pro-inflammatory cytokine production. Front Immunol. 2019;4(10):2096. https://doi.org/10.3389/fimmu.2019.02096. (PMID: 31552042; PMCID: PMC6736989).
Lopes AP, Hillen MR, Hinrichs AC, Blokland SL, Bekker CP, Pandit A, et al. Deciphering the role of cDC2s in Sjögren’s syndrome: transcriptomic profile links altered antigen processes with IFN signature and autoimmunity. Ann Rheum Dis. 2023;82(3):374–83. https://doi.org/10.1136/ard-2022-222728. (Epub 2022 Sep 28. PMID: 36171070; PMCID: PMC9933176).
Sun JL, Zhang HZ, Liu SY, Lian CF, Chen ZL, Shao TH, et al. Elevated EPSTI1 promote B cell hyperactivation through NF-κB signalling in patients with primary Sjögren’s syndrome. Ann Rheum Dis. 2020;79(4):518–24. https://doi.org/10.1136/annrheumdis-2019-216428. (Epub 2020 Feb 29. PMID: 32114510).
Comments (0)