NRF2 is essential for iron-overload stimulated osteoclast differentiation through regulation of redox and iron homeostasis

Babaei M, Bijani A, Heidari P, Hosseini SR, Heidari B. Serum ferritin levels and bone mineral density in the elderly. Caspian J Intern Med. 2018;9(3):232–8.

PubMed  PubMed Central  Google Scholar 

Che J, Yang J, Zhao B, Zhang G, Wang L, Peng S, Shang P. The effect of abnormal iron metabolism on osteoporosis. Biol Trace Elem Res. 2020;195:353–65.

Article  CAS  PubMed  Google Scholar 

Chen X, Yu C, Kang R, Tang D. Iron metabolism in ferroptosis. Front Cell Dev Biol. 2020;8:590226.

Article  PubMed  PubMed Central  Google Scholar 

Chen C, Hu F, Miao S, Sun L, Jiao Y, Xu M, Huang X, Yang Y, Zhou R. Transcription factor KLF7 promotes osteoclast differentiation by suppressing HO-1. Front Genet. 2022;13:798433.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chon SJ, Choi YR, Roh YH, Yun BH, Cho S, Choi YS, Lee BS, Seo SK. Association between levels of serum ferritin and bone mineral density in Korean premenopausal and postmenopausal women: KNHANES 2008-2010. PloS One. 2014;9:e114972.

Article  PubMed  PubMed Central  Google Scholar 

Das BK, Wang L, Fujiwara T, Zhou J, Aykin-Burns N, Krager KJ, Lan R, Mackintosh SG, Edmondson R, Jennings ML, Wang X, Feng JQ, Barrientos T, Gogoi J, Kannan A, Gao L, Xing W, Mohan S, Zhao H. Transferrin receptor 1-mediated iron uptake regulates bone mass in mice via osteoclast mitochondria and cytoskeleton. Elife. 2022;11:e73539.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dodson M, Castro-Portuguez R, Zhang DD. NRF2 plays a critical role in mitigating lipid peroxidation and ferroptosis. Redox Biol. 2019;23:101107.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gu Z, Wang H, Xia J, Yang Y, Jin Z, Xu H, Shi J, De Domenico I, Tricot G, Zhan F. Decreased ferroportin promotes myeloma cell growth and osteoclast differentiation. Cancer Res. 2015;75:2211–21.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hernansanz-Agustín P, Enríquez JA. Generation of reactive oxygen species by mitochondria. Antioxidants. 2021;10:415.

Article  PubMed  PubMed Central  Google Scholar 

Hyeon S, Lee H, Yang Y, Jeong W. Nrf2 deficiency induces oxidative stress and promotes RANKL-induced osteoclast differentiation. Free Radic Biol Med. 2013;65:789–99.

Article  CAS  PubMed  Google Scholar 

Ishii KA, Fumoto T, Iwai K, Takeshita S, Ito M, Shimohata N, Aburatani H, Taketani S, Lelliott CJ, Vidal-Puig A, Ikeda K. Coordination of PGC-1beta and iron uptake in mitochondrial biogenesis and osteoclast activation. Nat Med. 2009;15:259–66.

Article  CAS  PubMed  Google Scholar 

Jiang X, Stockwell BR, Conrad M. Ferroptosis: mechanisms, biology and role in disease. Nat Rev Mol Cell Biol. 2021;22:266–82.

Article  PubMed  PubMed Central  Google Scholar 

Jung DW, Park JH, Kim DH, Choi M, Kim S, Kim H, Seul DE, Park SG, Jung JH, Han K, Park YG. Association between serum ferritin and hemoglobin levels and bone health in Korean adolescents: a nationwide population-based study. Medicine. 2017;96:e9403.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kanzaki H, Shinohara F, Kajiya M, Kodama T. The Keap1/Nrf2 protein axis plays a role in osteoclast differentiation by regulating intracellular reactive oxygen species signaling. J Biol Chem. 2013;288:23009–20.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kansanen E, Kuosmanen SM, Leinonen H, Levonen AL. The Keap1-Nrf2 pathway: mechanisms of activation and dysregulation in cancer. Redox Biol. 2013;1:45–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ke K, Safder MA, Sul OJ, Kim WK, Suh JH, Joe Y, Chung HT, Choi HS. Hemeoxygenase-1 maintains bone mass via attenuating a redox imbalance in osteoclast. Mol Cell Endocrinol. 2015;409:11–20.

Article  CAS  PubMed  Google Scholar 

Kerins MJ, Ooi A. The roles of NRF2 in modulating cellular iron homeostasis. Antioxid Redox Signal. 2018;29:1756–73.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim BJ, Lee SH, Koh JM, Kim GS. The association between higher serum ferritin level and lower bone mineral density is prominent in women ≥45 years of age (KNHANES 2008-2010). Osteoporos Int. 2013;24:2627–37.

Article  CAS  PubMed  Google Scholar 

Kim BJ, Ahn SH, Bae SJ, Kim EH, Lee SH, Kim HK, Choe JW, Koh JM, Kim GS. Iron overload accelerates bone loss in healthy postmenopausal women and middle-aged men: a 3-year retrospective longitudinal study. J Bone Miner Res. 2012;27:2279–90.

Article  CAS  PubMed  Google Scholar 

Lee NK, Choi YG, Baik JY, Han SY, Jeong DW, Bae YS, Kim N, Lee SY. A crucial role for reactive oxygen species in RANKL-induced osteoclast differentiation. Blood. 2005;106(3):852–9.

Article  CAS  PubMed  Google Scholar 

Park JH, Lee NK, Lee SY. Current understanding of RANK signaling in osteoclast differentiation and maturation. Mol Cells. 2017;40(10):706–13.

CAS  PubMed  PubMed Central  Google Scholar 

Park CK, Lee Y, Kim KH, Lee ZH, Joo M, Kim HH. Nrf2 is a novel regulator of bone acquisition. Bone. 2014;63:36–46.

Article  CAS  PubMed  Google Scholar 

Takayanagi H. RANKL as the master regulator of osteoclast differentiation. J Bone Miner Metab. 2021;39:13–8.

Article  CAS  PubMed  Google Scholar 

Qin JJ, Cheng XD, Zhang J, Zhang WD. Dual roles and therapeutic potential of Keap1-Nrf2 pathway in pancreatic cancer: a systematic review. Cell Commun Signal. 2019;17:121.

Article  PubMed  PubMed Central  Google Scholar 

Sun X, Xie Z, Hu B, Zhang B, Ma Y, Pan X, Huang H, Wang J, Zhao X, Jie Z, Shi P, Chen Z. The Nrf2 activator RTA-408 attenuates osteoclastogenesis by inhibiting STING dependent NF-κb signaling. Redox Biol. 2020;28:101309.

Article  CAS  PubMed  Google Scholar 

Udagawa N, Koide M, Nakamura M, Nakamichi Y, Yamashita T, Uehara S, Kobayashi Y, Furuya Y, Yasuda H, Fukuda C, Tsuda E. Osteoclast differentiation by RANKL and OPG signaling pathways. J Bone Miner Metab. 2021;39:19–26.

Article  CAS  PubMed  Google Scholar 

Wang L, Fang B, Fujiwara T, Krager K, Gorantla A, Li C, Feng JQ, Jennings ML, Zhou J, Aykin-Burns N, Zhao H. Deletion of ferroportin in murine myeloid cells increases iron accumulation and stimulates osteoclastogenesis in vitro and in vivo. J Biol Chem. 2018;293:9248–64.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xie W, Lorenz S, Dolder S, Hofstetter W. Extracellular iron is a modulator of the differentiation of osteoclast lineage cells. Calcif Tissue Int. 2016;98(3):275–83.

Article  CAS  PubMed  Google Scholar 

Xu Z, Sun W, Li Y, Ling S, Zhao C, Zhong G, Zhao D, Song J, Song H, Li J, You L, Nie G, Chang Y, Li Y. The regulation of iron metabolism by hepcidin contributes to unloading-induced bone loss. Bone. 2017;94:152–61.

Article  CAS  PubMed  Google Scholar 

Xue P, Hu X, Powers J, Nay N, Chang E, Kwon J, Wong SW, Han L, Wu TH, Lee DJ, Tseng H, Ko CC. CDDO-Me, Sulforaphane and tBHQ attenuate the RANKL-induced osteoclast differentiation via activating the NRF2-mediated antioxidant response. Biochem Biophys Res Commun. 2019;511:637–43.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yin Y, Corry KA, Loughran JP, Li J. Moderate Nrf2 activation by genetic disruption of Keap1 has sex-specific effects on bone mass in mice. Sci Rep. 2020;10:348.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yuan Y, Yang J, Zhuge A, Li L, Ni S. Gut microbiota modulates osteoclast glutathione synthesis and mitochondrial biogenesis in mice subjected to ovariectomy. Cell Prolif. 2022;55:e13194.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang J, Zhao H, Yao G, Qiao P, Li L, Wu S. Therapeutic potential of iron chelators on osteoporosis and their cellular mechanisms. Biomed Pharmacother. 2021a;137:111380.

Article  CAS  PubMed  Google Scholar 

Zhang L, Zhang J, Jin Y, Yao G, Zhao H, Qiao P, Wu S. Nrf2 is a potential modulator for orchestrating iron homeostasis and redox balance in cancer cells. Front Cell Dev Biol. 2021b;9:728172.

Article  PubMed  PubMed Central  Google Scholar 

Zhang J, Zheng L, Wang Z, Pei H, Hu W, Nie J, Shang P, Li B, Hei TK, Zhou G. Lowering iron level protects against bone loss in focally irradiated and contralateral femurs through distinct mechanisms. Bone. 2019a;120:50–60.

留言 (0)

沒有登入
gif