LncRNA Tug1 relieves the steatosis of SelenoF-knockout hepatocytes via sponging miR-1934-3p

Chen M, et al. Long noncoding RNA TUG1 aggravates cerebral ischemia/reperfusion injury by acting as a ceRNA for miR-3072-3p to target St8sia2. Oxidative Med Cell Longev. 2022;2022:9381203.

Google Scholar 

Clayton M, et al. From NAFLD to MAFLD: nurse and allied health perspective. Liver Int. 2021;41(4):683–91.

Article  CAS  PubMed  Google Scholar 

Coassolo S, et al. Citrullination of pyruvate kinase M2 by PADI1 and PADI3 regulates glycolysis and cancer cell proliferation. Nat Commun. 2021;12(1):1718.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dubois V, et al. Distinct but complementary contributions of PPAR isotypes to energy homeostasis. J Clin Invest. 2017;127(4):1202–14.

Article  PubMed  PubMed Central  Google Scholar 

Feng X, et al. Apigenin, a modulator of PPARγ, attenuates HFD-induced NAFLD by regulating hepatocyte lipid metabolism and oxidative stress via Nrf2 activation. Biochem Pharmacol. 2017;136:136–49.

Article  CAS  PubMed  Google Scholar 

Festuccia WT, et al. PPARgamma agonism increases rat adipose tissue lipolysis, expression of glyceride lipases, and the response of lipolysis to hormonal control. Diabetologia. 2006;49(10):2427–36.

Article  CAS  PubMed  Google Scholar 

Ge Q, et al. MicroRNAs regulated by adiponectin as novel targets for controlling adipose tissue inflammation. Endocrinology. 2012;153(11):5285–96.

Article  CAS  PubMed  Google Scholar 

Ghaboura N, et al. Diabetes mellitus abrogates erythropoietin-induced cardioprotection against ischemic-reperfusion injury by alteration of the RISK/GSK-3β signaling. Basic Res Cardiol. 2011;106(1):147–62.

Article  CAS  PubMed  Google Scholar 

Gladyshev VN, et al. A new human selenium-containing protein. Purification, characterization, and cDNA sequence. J Biol Chem. 1998;273(15):8910–5.

Article  CAS  PubMed  Google Scholar 

Gu L, et al. The IKKβ-USP30-ACLY axis controls lipogenesis and tumorigenesis. Hepatology. 2021;73(1):160–74.

Article  CAS  PubMed  Google Scholar 

Guo L, et al. Enhanced acetylation of ATP-citrate lyase promotes the progression of nonalcoholic fatty liver disease. J Biol Chem. 2019;294(31):11805–16.

Article  CAS  PubMed  PubMed Central  Google Scholar 

He Z, et al. Interfering TUG1 Attenuates cerebrovascular endothelial apoptosis and inflammatory injury after cerebral ischemia/reperfusion via TUG1/miR-410/FOXO3 ceRNA axis. Neurotox Res. 2022;40(1):1–13.

Article  CAS  PubMed  Google Scholar 

Hu C, et al. Long non-coding RNA NORAD promotes the prostate cancer cell extracellular vesicle release via microRNA-541-3p-regulated PKM2 to induce bone metastasis of prostate cancer. J Exp Clin Cancer Res. 2021;40(1):98.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li Q, et al. MALAT1 sponges miR-26a and miR-26b to regulate endothelial cell angiogenesis via PFKFB3-driven glycolysis in early-onset preeclampsia. Mol Ther Nucleic Acids. 2021;23:897–907.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li Y, et al. TUG1 enhances high glucose-impaired endothelial progenitor cell function via miR-29c-3p/PDGF-BB/Wnt signaling. Stem Cell Res Ther. 2020;11(1):441.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu L, et al. miR-1934, downregulated in obesity, protects against low-grade inflammation in adipocytes. Mol Cell Endocrinol. 2016;428:109–17.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li Z, et al. LncIRS1 controls muscle atrophy via sponging miR-15 family to activate IGF1-PI3K/AKT pathway. J Cachexia Sarcopenia Muscle. 2019;10(2):391–410.

Article  PubMed  PubMed Central  Google Scholar 

Lund Winther A, et al. ANGPTL4 sensitizes lipoprotein lipase to PCSK3 cleavage by catalyzing its unfolding. J Lipid Res. 2021;62:100071.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Martinez Calejman C, et al. mTORC2-AKT signaling to ATP-citrate lyase drives brown adipogenesis and de novo lipogenesis. Nat Commun. 2020;11(1):575.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mundi MS, et al. Evolution of NAFLD and its management. Nutr Clin Pract. 2020;35(1):72–84.

Article  PubMed  Google Scholar 

Pike LS, et al. Inhibition of fatty acid oxidation by etomoxir impairs NADPH production and increases reactive oxygen species resulting in ATP depletion and cell death in human glioblastoma cells. Biochim Biophys Acta-Bioenerg. 2011;1807(6):726–34.

Article  CAS  Google Scholar 

Puckett D, et al. The role of PKM2 in metabolic reprogramming: insights into the regulatory roles of non-coding RNAs. Int J Mol Sci. 2021;22(3):1171.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Qi W, et al. Pyruvate kinase M2 activation may protect against the progression of diabetic glomerular pathology and mitochondrial dysfunction. Nat Med. 2017;23(6):753–62.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Reddy SS, Agarwal H, Barthwal MK. Cilostazol ameliorates heart failure with preserved ejection fraction and diastolic dysfunction in obese and non-obese hypertensive mice. J Mol Cell Cardiol. 2018;123:46–57.

Article  CAS  PubMed  Google Scholar 

Shang A, et al. Knockdown of long noncoding RNA PVT1 suppresses cell proliferation and invasion of colorectal cancer via upregulation of microRNA-214-3p. Am J Physiol Gastrointest Liver Physiol. 2019;317(2):G222–32.

Article  CAS  PubMed  Google Scholar 

Sohel MMH. Macronutrient modulation of mRNA and microRNA function in animals: a review. Anim Nutr. 2020;6(3):258–68.

Article  PubMed  PubMed Central  Google Scholar 

Steinbrenner H. Interference of selenium and selenoproteins with the insulin-regulated carbohydrate and lipid metabolism. Free Radic Biol Med. 2013a;65:1538–47.

Article  CAS  PubMed  Google Scholar 

Steinbrenner H, Duntas LH, Rayman MP. The role of selenium in type-2 diabetes mellitus and its metabolic comorbidities. Redox Biol. 2022;50:102236.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Steinbrenner H, et al. High selenium intake and increased diabetes risk: experimental evidence for interplay between selenium and carbohydrate metabolism. J Clin Biochem Nutr. 2011;48(1):40–5.

Article  CAS  PubMed  Google Scholar 

Sun L, et al. Long noncoding RNAs regulate adipogenesis. Proc Natl Acad Sci USA. 2013;110(9):3387–92.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sun YZ, et al. Anti-atherosclerotic effect of hesperidin in LDLr(-/-) mice and its possible mechanism. Eur J Pharmacol. 2017;815:109–17.

Article  CAS  PubMed  Google Scholar 

Wang H, et al. The lncRNA ZFAS1 regulates lipogenesis in colorectal cancer by binding polyadenylate-binding protein 2 to stabilize SREBP1 mRNA. Mol Ther Nucleic Acids. 2022;27:363–74.

Article  CAS  PubMed  Google Scholar 

Wang S, et al. Novel insights of dietary polyphenols and obesity. J Nutr Biochem. 2014;25(1):1–18.

Article  PubMed  PubMed Central  Google Scholar 

Xiong Y, et al. Icaritin ameliorates hepatic steatosis via promoting fatty acid β-oxidation and insulin sensitivity. Life Sci. 2021;268:119000.

Article  CAS  PubMed  Google Scholar 

Xu M, et al. iRhom2 promotes hepatic steatosis by activating MAP3K7-dependent pathway. Hepatology. 2020a;73:1346–64.

Article  Google Scholar 

Xu F, et al. Annexin A5 regulates hepatic macrophage polarization via directly targeting PKM2 and ameliorates NASH. Redox Biol. 2020b;36:101634.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yan L, Liu G, Wu X. The umbilical cord mesenchymal stem cell-derived exosomal lncRNA H19 improves osteochondral activity through miR-29b-3p/FoxO3 axis. Clin Transl Med. 2021;11(1):e255.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yim SH, et al. Role of SelenoF as a gatekeeper of secreted disulfide-rich glycoproteins. Cell Rep. 2018;23(5):1387–98.

留言 (0)

沒有登入
gif