Almonte AG, Sweatt JD (2011) Serine proteases, serine protease inhibitors, and protease- activated receptors: roles in synaptic function and behavior. Brain Res 1407:107–122
Article CAS PubMed PubMed Central Google Scholar
Ashwood P, Enstrom A, Krakowiak P, Hertz-Picciotto I, Hansen RL, Croen LA et al (2008) Decreased transforming growth factor beta1 in autism: a potential link between immune dysregulation and impairment in clinical behavioral outcomes. J Neuroimmunol 204(1–2):149–153
Article CAS PubMed PubMed Central Google Scholar
Baron-Cohen S, Ring HA, Wheelwright S, Bullmore ET, Brammer MJ, Simmons A et al (1999) Social intelligence in the normal and autistic brain: an fMRI study. Eur J Neurosci 11(6):1891–1898
Article CAS PubMed Google Scholar
Bodfish JW, Symons FJ, Parker DE, Lewis MH (2000) Varieties of repetitive behavior in autism: comparisons to mental retardation. J Autism Dev Disord 30(3):237–243
Article CAS PubMed Google Scholar
Bourgeron T (2015) From the genetic architecture to synaptic plasticity in autism spectrum disorder. Nat Rev Neurosci 16(9):551–63.https://doi.org/10.1038/nrn3992
Bozkurt H, Şimşek Ş, Şahin S (2021) Elevated levels of cortisol, brain-derived neurotropic factor and tissue plasminogen activator in male children with autism spectrum disorder. Autism Res 14(10):2078–2084
Carper RA, Courchesne E (2005) Localized enlargement of the frontal cortex in early autism. Biol Psychiatry 57(2):126–133
Courchesne E, Karns CM, Davis HR, Ziccardi R, Carper RA, Tigue ZD et al (2001) Unusual brain growth patterns in early life in patients with autistic disorder: an MRI study. Neurology 57(2):245–254
Article CAS PubMed Google Scholar
Courchesne E, Campbell K, Solso S (2011) Brain growth across the life span in autism: age- specific changes in anatomical pathology. Brain Res 1380(22):138–145
Article CAS PubMed Google Scholar
Dilara K, Rebecca R, Katrin S, Hannah V, Sara D, Matthias D, Michaela S, Hartmut S, Denis V, Markus G and Giovanna G (2021) Neuroserpin is strongly expressed in the developing and adult mouse neocortex but its absence does not perturb cortical lamination and synaptic proteome. Front Neuroanat 15:627896.https://doi.org/10.3389/fnana.2021.627896
Ebert DH, Greenberg ME (2013) Activity-dependent neuronal signalling and autism spectrum disorder. Nature 493:327–337
Article CAS PubMed PubMed Central Google Scholar
Ekici ÖD, Paetzel M, Dalbey RE (2008) Unconventional serine proteases: variations on the catalytic Ser/His/Asp triad configuration. Protein Sci 17(12):2023–2037
Article CAS PubMed PubMed Central Google Scholar
Ferrer-Ferrer M, Dityatev A (2018) Shaping synapses by the neural extracellular matrix. Front Neuroanat 1–16.https://doi.org/10.3389/fnana.2018.00040
Ferrer-Ferrer M, Jia S, Kaushik R, Schneeberg J, Figiel I, Aleshin S et al (2023) Mice deficient in synaptic protease neurotrypsin show impaired spaced long-term potentiation and blunted learning-induced modulation of dendritic spines. Cell Mol Life Sci 80(4). https://doi.org/10.1007/s00018-023-04720-z
Fournier KA, Hass CJ, Naik SK, Lodha N, Cauraugh JH (2010) Motor coordination in autism spectrum disorders: a synthesis and meta-analysis. J Autism Dev Disord 40:1227–40. https://doi.org/10.1007/s10803-010-0981-3
Garber K (2007) Autism’s cause may reside in abnormalities at the synapse. Science (1979) 317(5835):190–1. https://doi.org/10.1126/science.317.5835.190
Gschwend TP, Krueger SR, Kozlov SV, Wolfer DP, Sonderegger P (1997) Neurotrypsin, a novel multidomain serine protease expressed in the nervous system. Mol Cell Neurosci 9(3):207–19. https://doi.org/10.1006/mcne.1997.0616
Habela CW, Song H, Ming G li (2016) Modeling synaptogenesis in schizophrenia and autism using human iPSC derived neurons. Mol Cell Neurosci 73:52–62.https://doi.org/10.1016/j.mcn.2015.12.002
Hashimoto T, Tayama M, Murakawa K, Yoshimoto T, Miyazaki M, Harada M et al (1995) Development of the brainstem and cerebellum in autistic patients. J Autism Dev Disord 25(1):1–18. https://doi.org/10.1007/BF02178163
Article CAS PubMed Google Scholar
Hermann M, Reumann R, Schostak K, Kement D, Gelderblom M, Bernreuther C et al (2020) Deficits in developmental neurogenesis and dendritic spine maturation in mice lacking the serine protease inhibitor neuroserpin. Mol Cell Neurosci 102:1–14. https://doi.org/10.1016/j.mcn.2019.103420
Herring S, Gray KM, Taffe J, Tonge B, Sweeney D, Einfeld S (2006) Behaviour and emotional problems in toddlers with pervasive developmental disorders and developmental delay: associations with parental mental health and family functioning. J Intellect Disabil Res 50(12):874–82. https://doi.org/10.1111/j.1365-2788.2006.00904.x
Hoover CL, Hilgenberg LGW, Smith MA (2003) The COOH-terminal domain of agrin signals via a synaptic receptor in central nervous system neurons. J Cell Biol 161:923–932. https://doi.org/10.1083/jcb.200301013
Article CAS PubMed PubMed Central Google Scholar
Kalia M (2008) Brain development: anatomy, connectivity, adaptive plasticity, and toxicity. Metabolism 57(SUPL.2):2–5. https://doi.org/10.1016/j.metabol.2008.07.009
Kemper TL, Bauman M (1998) Neuropathology of infantile autism. J Neuropathol Exp Neurol 57:645–52. https://doi.org/10.1097/00005072-199807000-00001
Kruithof EKO, Dunoyer-Geindre S (2014) Human tissue-type plasminogen activator. Thromb Haemost 112(2):243–254
Kummer TT, Misgeld T, Sanes JR (2006) Assembly of the postsynaptic membrane at the neuromuscular junction: paradigm lost. Curr Opin Neurobiol 16(1):74–82
Article CAS PubMed Google Scholar
Kwon KJ, Cho KS, Lee SH, Kim JN, Joo SH, Ryu JH et al (2011) Regulation of tissue plasminogen activator/plasminogen activator inhibitor‐1 by hydrocortisone in rat primary astrocytes. J Neurosci Res 89(7):1059–1069
Article CAS PubMed Google Scholar
Lange N, Travers BG, Bigler ED, Prigge MBD, Froehlich AL, Nielsen JA et al (2015) Longitudinal volumetric brain changes in autism spectrum disorder ages 6–35 years. Autism Res 8(1):82–93
Madani R, Kozlov S, Akhmedov A, Cinelli P, Kinter J, Lipp HP et al (2003) Impaired explorative behavior and neophobia in genetically modified mice lacking or overexpressing the extracellular serine protease inhibitor neuroserpin. Mol Cell Neurosci 23(3):473–494
Article CAS PubMed Google Scholar
Magee JC, Grienberger C (2020) Synaptic plasticity forms and functions. Annu Rev Neurosci 43:95–117
Article CAS PubMed Google Scholar
Miranda E, Lomas DA (2006) Neuroserpin: a serpin to think about. Cell Mol Life Sci 63(6):709–22. https://doi.org/10.1007/s00018-005-5077-4
Mitsui S, Osako Y, Yokoi F, Dang MT, Yuri K, Li Y et al (2009) A mental retardation gene, motopsin/neurotrypsin/prss12, modulates hippocampal function and social interaction. Eur J Neurosci 30(12):2368–2378
Article PubMed PubMed Central Google Scholar
Mitsui S, Osako Y, Yuri K (2014) Mental retardation-related protease, motopsin (prss12), binds to the BRICHOS domain of the integral membrane protein 2a. Cell Biol Int 38(1):117–123
Article CAS PubMed Google Scholar
Mizuno M, Yamada K, Maekawa N, Saito K, Seishima M, Nabeshima T (2002) CREB phosphorylation as a molecular marker of memory processing in the hippocampus for spatial learning. Behav Brain Res 133:135–41. https://doi.org/10.1016/s0166-4328(01)00470-3
Molinari F, Rio M, Meskenaite V, Encha-Razavi F, Augé J, Bacq D et al (2002) Truncating neurotrypsin mutation in autosomal recessive nonsyndromic mental retardation. Science (1979) 298:1779–81. https://doi.org/10.1126/science.1076521
Naif HA, Hayder MA, Ali I AG, Saud AA, Athanasios A, Marios P, Hebatallah MS, Gaber ESB (2024) The probable role of tissue plasminogen activator/neuroserpin axis in Alzheimer’s disease: a new perspective Published: 02 November 2023 Volume 124, pages 377–388. https://doi.org/10.1007/s13760-023-02403-x
Nakamura K, Takabe A, Shimizu F, Takahashi M, Matsuo O, Mitsui S (2015) Tissue plasminogen activator modulates emotion in a social context. Behav Brain Res 281:24–31
Article CAS PubMed Google Scholar
Nurjono M, Lee J, Chong SA (2012) A review of brain-derived neurotrophic factor as a candidate biomarker in schizophrenia. Clin Psychopharmacol Neurosci 10(2):61–70. https://doi.org/10.9758/cpn.2012.10.2.61
Okazaki S, Kimura R, Otsuka I, Funabiki Y, Murai T, Hishimoto A (2022) Epigenetic clock analysis and increased plasminogen activator inhibitor-1 in highfunctioning autism spectrum disorder. PLoS One 17(2 February):1–11. https://doi.org/10.1371/journal.pone.0263478
Pawlak R, Magarinos AM, Melchor J, McEwen B, Strickland S (2003) Tissue plasminogen activator in the amygdala is critical for stress-induced anxiety-like behavior. Nat Neurosci 6(2):168–174
Article CAS PubMed Google Scholar
Peça J, Feng G (2012) Cellular and synaptic network defects in autism. Curr Opin Neurobiol 22(5):866–72.https://doi.org/10.1016/j.conb.2012.02.015
Prosperi M, Guiducci L, Peroni DG, Narducci C, Gaggini M, Calderoni S et al (2019) Brain sciences inflammatory biomarkers are correlated with some forms of regressive autism spectrum disorder. Brain Sci 366(9):1–14. https://doi.org/10.3390/brainsci9120366
Reif R, Sales S, Hettwer S, Dreier B, Gisler C, Wölfel J et al (2007) Specific cleavage of agrin by neurotrypsin, a synaptic protease linked to mental retardation. FASEB J 21(13):3468–3478
Article CAS PubMed Google Scholar
Reijerkerk A, Kooij G, van der Pol SMA, Leyen T, van het Hof B, Couraud PO et al (2008) Tissue-type plasminogen activator is a regulator of monocyte diapedesis through the brain endothelial barrier. J Immunol 181(5):3567–3574
Article CAS PubMed Google Scholar
Reumann R, Vierk R, Zhou L, Gries F, Kraus V, Mienert J et al (2017) The serine protease inhibitor neuroserpin is required for normal synaptic plasticity and regulates learning and social behavior. Learn Mem 24(12):650–659
Comments (0)