Piperine Prevents Scopolamine-Induced Cognitive Impairment via its Antioxidant and Anti-Inflammatory Roles; Suggesting Potential Modulation of Necroptosis-Related Genes Including MLKL and TNF-α

(2023) 2023 Alzheimer's disease facts and figures. Alzheimer's & Dementia 19:1598–1695. https://doi.org/10.1002/alz.13016

Abdelhady R, Younis NS, Ali O, Shehata S, Sayed RH, Nadeem RI (2023) Cognitive enhancing effects of pazopanib in D-galactose/ovariectomized Alzheimer’s rat model: insights into the role of RIPK1/RIPK3/MLKL necroptosis signaling pathway. Inflammopharmacology 31:2719–2729

Article  PubMed  PubMed Central  CAS  Google Scholar 

Adefegha SA, Oyediran JA, Oboh G (2023) Piperine abates cognitive dysfunction via modulation of key enzymes relevant to neurodegeneration in scopolamine-induced rats. Comp Clin Pathol 32:451–460

Article  CAS  Google Scholar 

Balusu S, De Strooper B (2024) The necroptosis cell death pathway drives neurodegeneration in Alzheimer’s disease. Acta Neuropathol 147:96

Article  PubMed  PubMed Central  Google Scholar 

Bhandari M, Tiwari RK, Chanda S, Bonde GV (2024) 10 - Targeting angiogenesis, inflammation, and oxidative stress in Alzheimer’s diseases. In: Behl T, Singh S, Sharma N (eds) Targeting angiogenesis, inflammation, and oxidative stress in chronic diseases. Academic Press pp 215–249. https://doi.org/10.1016/B978-0-443-13587-3.00003-5

Burgaletto C, Munafò A, Di Benedetto G, De Francisci C, Caraci F, Di Mauro R, Bucolo C, Bernardini R, Cantarella G (2020) The immune system on the TRAIL of Alzheimer’s disease. J Neuroinflammation 17:298

Article  PubMed  PubMed Central  CAS  Google Scholar 

Caccamo A, Branca C, Piras IS, Ferreira E, Huentelman MJ, Liang WS, Readhead B, Dudley JT, Spangenberg EE, Green KN, Belfiore R, Winslow W, Oddo S (2017) Necroptosis activation in Alzheimer’s disease. Nat Neurosci 20:1236–1246

Article  PubMed  CAS  Google Scholar 

Calaf XA, Dios C, Roca V, Trullas R, Colell A (2023) High cholesterol levels promotes TNF-α-dependent necroptosis in Alzheimer’s disease. Alzheimers Dement 19:e074753

Article  Google Scholar 

Cantarella G, Uberti D, Carsana T, Lombardo G, Bernardini R, Memo M (2003) Neutralization of TRAIL death pathway protects human neuronal cell line from beta-amyloid toxicity. Cell Death Differ 10:134–141

Article  PubMed  CAS  Google Scholar 

Chavoshinezhad S, Beirami E, Izadpanah E, Feligioni M, Hassanzadeh K (2023) Molecular mechanism and potential therapeutic targets of necroptosis and ferroptosis in Alzheimer’s disease. Biomed Pharmacother 168:115656

Article  PubMed  CAS  Google Scholar 

Chen Y, Yu Y (2023) Tau and neuroinflammation in Alzheimer’s disease: interplay mechanisms and clinical translation. J Neuroinflammation 20:165

Article  PubMed  PubMed Central  Google Scholar 

Chonpathompikunlert P, Wattanathorn J, Muchimapura S (2010) Piperine, the main alkaloid of Thai black pepper, protects against neurodegeneration and cognitive impairment in animal model of cognitive deficit like condition of Alzheimer’s disease. Food Chem Toxicol 48:798–802

Article  PubMed  CAS  Google Scholar 

De Plano LM, Calabrese G, Rizzo MG, Oddo S, Caccamo A (2023) The role of the transcription factor Nrf2 in Alzheimer’s disease: therapeutic opportunities. Biomolecules. https://doi.org/10.3390/biom13030549

Article  PubMed  PubMed Central  Google Scholar 

Dhapola R, Kumari S, Sharma P, HariKrishnaReddy D (2023) Insight into the emerging and common experimental in-vivo models of Alzheimer’s disease. Lab Anim Res 39:33

Article  PubMed  PubMed Central  CAS  Google Scholar 

Dhuriya YK, Sharma D (2018) Necroptosis: a regulated inflammatory mode of cell death. J Neuroinflammation 15(1):199. https://doi.org/10.1186/s12974-018-1235-0

Dong Y, Yu H, Li X, Bian K, Zheng Y, Dai M, Feng X, Sun Y, He Y, Yu B, Zhang H, Wu J, Yu X, Wu H, Kong W (2022) Hyperphosphorylated tau mediates neuronal death by inducing necroptosis and inflammation in Alzheimer’s disease. J Neuroinflammation 19:205

Article  PubMed  PubMed Central  CAS  Google Scholar 

Elnaggar YS, Etman SM, Abdelmonsif DA, Abdallah OY (2015) Intranasal piperine-loaded chitosan nanoparticles as brain-targeted therapy in Alzheimer’s disease: optimization, biological efficacy, and potential toxicity. J Pharm Sci 104:3544–3556

Article  PubMed  CAS  Google Scholar 

Elnaggar YS, Etman SM, Abdelmonsif DA, Abdallah OY (2015b) Novel piperine-loaded Tween-integrated monoolein cubosomes as brain-targeted oral nanomedicine in Alzheimer’s disease: pharmaceutical, biological, and toxicological studies. Int J Nanomedicine 10:5459–5473

Article  PubMed  PubMed Central  CAS  Google Scholar 

Etman SM, Elnaggar YSR, Abdelmonsif DA, Abdallah OY (2018) Oral brain-targeted microemulsion for enhanced piperine delivery in Alzheimer’s disease therapy. In vitro appraisal, in vivo activity, and nanotoxicity. AAPS PharmSciTech 19:3698–3711

Article  PubMed  CAS  Google Scholar 

Fão L, Mota SI, Rego AC (2019) Shaping the Nrf2-ARE-related pathways in Alzheimer’s and Parkinson’s diseases. Ageing Res Rev 54:100942

Article  PubMed  Google Scholar 

Foroutan Z, Cicero AFG, Jamialahmadi T, Sahebkar A (2024) Curcuminoids as natural modulators of necroptosis: therapeutic implications. Naunyn-Schmiedebergs Arch Pharmacol. https://doi.org/10.1007/s00210-024-03455-3

Article  PubMed  Google Scholar 

Fu M, Sun Z-h, Zuo H-c (2010) Neuroprotective effect of piperine on primarily cultured hippocampal neurons. Biol Pharm Bull 33:598–603

Article  PubMed  CAS  Google Scholar 

Gustavsson A, Norton N, Fast T, Frölich L, Georges J, Holzapfel D, Kirabali T, Krolak-Salmon P, Rossini PM, Ferretti MT, Lanman L, Chadha AS, van der Flier WM (2023) Global estimates on the number of persons across the Alzheimer’s disease continuum. Alzheimers Dement 19:658–670

Article  PubMed  Google Scholar 

Haq IU, Imran M, Nadeem M, Tufail T, Gondal TA, Mubarak MS (2021) Piperine: a review of its biological effects. Phytotherapy Research : PTR 35:680–700

Article  PubMed  CAS  Google Scholar 

Hassani S, Maghsoudi H, Fattahi F, Malekinejad F, Hajmalek N, Sheikhnia F, Kheradmand F, Fahimirad S, Ghorbanpour M (2023) Flavonoids nanostructures promising therapeutic efficiencies in colorectal cancer. Int J Biol Macromol 241:124508

Article  PubMed  CAS  Google Scholar 

Huang WJ, Zhang X, Chen WW (2016) Role of oxidative stress in Alzheimer’s disease. Biomed Rep 4:519–522

Article  PubMed  PubMed Central  CAS  Google Scholar 

Jayaraman A, Htike TT, James R, Picon C, Reynolds R (2021) TNF-mediated neuroinflammation is linked to neuronal necroptosis in Alzheimer’s disease hippocampus. Acta Neuropathol Commun 9:159

Article  PubMed  PubMed Central  CAS  Google Scholar 

Joshi H, Parle M (2005) Effects of piperine on memory and behavior mediated via monoamine neurotransmiters. J Tradit Med 22:39–43

CAS  Google Scholar 

Kang K, Park C, Chan FK-M (2022) Necroptosis at a glance. J Cell Sci 135:jcs260091

Article  PubMed  PubMed Central  CAS  Google Scholar 

Kar F, Hacioglu C, Kar E, Donmez DB, Kanbak G (2022) Probiotics ameliorates LPS induced neuroinflammation injury on Aβ 1–42, APP, γ-β secretase and BDNF levels in maternal gut microbiota and fetal neurodevelopment processes. Metab Brain Dis 37:1387–1399

Article  PubMed  CAS  Google Scholar 

Kearney CJ, Martin SJ (2017) An inflammatory perspective on necroptosis. Mol Cell 65:965–973

Article  PubMed  CAS  Google Scholar 

Khalili-Fomeshi M, Azizi MG, Esmaeili MR, Gol M, Kazemi S, Ashrafpour M, Moghadamnia AA, Hosseinzadeh S (2018) Piperine restores streptozotocin-induced cognitive impairments: insights into oxidative balance in cerebrospinal fluid and hippocampus. Behav Brain Res 337:131–138

Article  PubMed  CAS  Google Scholar 

Khosravi M, Poursaleh A, Ghasempour G, Farhad S, Najafi M (2019) The effects of oxidative stress on the development of atherosclerosis. Biol Chem 400:711–732

Article 

Comments (0)

No login
gif