(2023) 2023 Alzheimer's disease facts and figures. Alzheimer's & Dementia 19:1598–1695. https://doi.org/10.1002/alz.13016
Abdelhady R, Younis NS, Ali O, Shehata S, Sayed RH, Nadeem RI (2023) Cognitive enhancing effects of pazopanib in D-galactose/ovariectomized Alzheimer’s rat model: insights into the role of RIPK1/RIPK3/MLKL necroptosis signaling pathway. Inflammopharmacology 31:2719–2729
Article PubMed PubMed Central CAS Google Scholar
Adefegha SA, Oyediran JA, Oboh G (2023) Piperine abates cognitive dysfunction via modulation of key enzymes relevant to neurodegeneration in scopolamine-induced rats. Comp Clin Pathol 32:451–460
Balusu S, De Strooper B (2024) The necroptosis cell death pathway drives neurodegeneration in Alzheimer’s disease. Acta Neuropathol 147:96
Article PubMed PubMed Central Google Scholar
Bhandari M, Tiwari RK, Chanda S, Bonde GV (2024) 10 - Targeting angiogenesis, inflammation, and oxidative stress in Alzheimer’s diseases. In: Behl T, Singh S, Sharma N (eds) Targeting angiogenesis, inflammation, and oxidative stress in chronic diseases. Academic Press pp 215–249. https://doi.org/10.1016/B978-0-443-13587-3.00003-5
Burgaletto C, Munafò A, Di Benedetto G, De Francisci C, Caraci F, Di Mauro R, Bucolo C, Bernardini R, Cantarella G (2020) The immune system on the TRAIL of Alzheimer’s disease. J Neuroinflammation 17:298
Article PubMed PubMed Central CAS Google Scholar
Caccamo A, Branca C, Piras IS, Ferreira E, Huentelman MJ, Liang WS, Readhead B, Dudley JT, Spangenberg EE, Green KN, Belfiore R, Winslow W, Oddo S (2017) Necroptosis activation in Alzheimer’s disease. Nat Neurosci 20:1236–1246
Article PubMed CAS Google Scholar
Calaf XA, Dios C, Roca V, Trullas R, Colell A (2023) High cholesterol levels promotes TNF-α-dependent necroptosis in Alzheimer’s disease. Alzheimers Dement 19:e074753
Cantarella G, Uberti D, Carsana T, Lombardo G, Bernardini R, Memo M (2003) Neutralization of TRAIL death pathway protects human neuronal cell line from beta-amyloid toxicity. Cell Death Differ 10:134–141
Article PubMed CAS Google Scholar
Chavoshinezhad S, Beirami E, Izadpanah E, Feligioni M, Hassanzadeh K (2023) Molecular mechanism and potential therapeutic targets of necroptosis and ferroptosis in Alzheimer’s disease. Biomed Pharmacother 168:115656
Article PubMed CAS Google Scholar
Chen Y, Yu Y (2023) Tau and neuroinflammation in Alzheimer’s disease: interplay mechanisms and clinical translation. J Neuroinflammation 20:165
Article PubMed PubMed Central Google Scholar
Chonpathompikunlert P, Wattanathorn J, Muchimapura S (2010) Piperine, the main alkaloid of Thai black pepper, protects against neurodegeneration and cognitive impairment in animal model of cognitive deficit like condition of Alzheimer’s disease. Food Chem Toxicol 48:798–802
Article PubMed CAS Google Scholar
De Plano LM, Calabrese G, Rizzo MG, Oddo S, Caccamo A (2023) The role of the transcription factor Nrf2 in Alzheimer’s disease: therapeutic opportunities. Biomolecules. https://doi.org/10.3390/biom13030549
Article PubMed PubMed Central Google Scholar
Dhapola R, Kumari S, Sharma P, HariKrishnaReddy D (2023) Insight into the emerging and common experimental in-vivo models of Alzheimer’s disease. Lab Anim Res 39:33
Article PubMed PubMed Central CAS Google Scholar
Dhuriya YK, Sharma D (2018) Necroptosis: a regulated inflammatory mode of cell death. J Neuroinflammation 15(1):199. https://doi.org/10.1186/s12974-018-1235-0
Dong Y, Yu H, Li X, Bian K, Zheng Y, Dai M, Feng X, Sun Y, He Y, Yu B, Zhang H, Wu J, Yu X, Wu H, Kong W (2022) Hyperphosphorylated tau mediates neuronal death by inducing necroptosis and inflammation in Alzheimer’s disease. J Neuroinflammation 19:205
Article PubMed PubMed Central CAS Google Scholar
Elnaggar YS, Etman SM, Abdelmonsif DA, Abdallah OY (2015) Intranasal piperine-loaded chitosan nanoparticles as brain-targeted therapy in Alzheimer’s disease: optimization, biological efficacy, and potential toxicity. J Pharm Sci 104:3544–3556
Article PubMed CAS Google Scholar
Elnaggar YS, Etman SM, Abdelmonsif DA, Abdallah OY (2015b) Novel piperine-loaded Tween-integrated monoolein cubosomes as brain-targeted oral nanomedicine in Alzheimer’s disease: pharmaceutical, biological, and toxicological studies. Int J Nanomedicine 10:5459–5473
Article PubMed PubMed Central CAS Google Scholar
Etman SM, Elnaggar YSR, Abdelmonsif DA, Abdallah OY (2018) Oral brain-targeted microemulsion for enhanced piperine delivery in Alzheimer’s disease therapy. In vitro appraisal, in vivo activity, and nanotoxicity. AAPS PharmSciTech 19:3698–3711
Article PubMed CAS Google Scholar
Fão L, Mota SI, Rego AC (2019) Shaping the Nrf2-ARE-related pathways in Alzheimer’s and Parkinson’s diseases. Ageing Res Rev 54:100942
Foroutan Z, Cicero AFG, Jamialahmadi T, Sahebkar A (2024) Curcuminoids as natural modulators of necroptosis: therapeutic implications. Naunyn-Schmiedebergs Arch Pharmacol. https://doi.org/10.1007/s00210-024-03455-3
Fu M, Sun Z-h, Zuo H-c (2010) Neuroprotective effect of piperine on primarily cultured hippocampal neurons. Biol Pharm Bull 33:598–603
Article PubMed CAS Google Scholar
Gustavsson A, Norton N, Fast T, Frölich L, Georges J, Holzapfel D, Kirabali T, Krolak-Salmon P, Rossini PM, Ferretti MT, Lanman L, Chadha AS, van der Flier WM (2023) Global estimates on the number of persons across the Alzheimer’s disease continuum. Alzheimers Dement 19:658–670
Haq IU, Imran M, Nadeem M, Tufail T, Gondal TA, Mubarak MS (2021) Piperine: a review of its biological effects. Phytotherapy Research : PTR 35:680–700
Article PubMed CAS Google Scholar
Hassani S, Maghsoudi H, Fattahi F, Malekinejad F, Hajmalek N, Sheikhnia F, Kheradmand F, Fahimirad S, Ghorbanpour M (2023) Flavonoids nanostructures promising therapeutic efficiencies in colorectal cancer. Int J Biol Macromol 241:124508
Article PubMed CAS Google Scholar
Huang WJ, Zhang X, Chen WW (2016) Role of oxidative stress in Alzheimer’s disease. Biomed Rep 4:519–522
Article PubMed PubMed Central CAS Google Scholar
Jayaraman A, Htike TT, James R, Picon C, Reynolds R (2021) TNF-mediated neuroinflammation is linked to neuronal necroptosis in Alzheimer’s disease hippocampus. Acta Neuropathol Commun 9:159
Article PubMed PubMed Central CAS Google Scholar
Joshi H, Parle M (2005) Effects of piperine on memory and behavior mediated via monoamine neurotransmiters. J Tradit Med 22:39–43
Kang K, Park C, Chan FK-M (2022) Necroptosis at a glance. J Cell Sci 135:jcs260091
Article PubMed PubMed Central CAS Google Scholar
Kar F, Hacioglu C, Kar E, Donmez DB, Kanbak G (2022) Probiotics ameliorates LPS induced neuroinflammation injury on Aβ 1–42, APP, γ-β secretase and BDNF levels in maternal gut microbiota and fetal neurodevelopment processes. Metab Brain Dis 37:1387–1399
Article PubMed CAS Google Scholar
Kearney CJ, Martin SJ (2017) An inflammatory perspective on necroptosis. Mol Cell 65:965–973
Article PubMed CAS Google Scholar
Khalili-Fomeshi M, Azizi MG, Esmaeili MR, Gol M, Kazemi S, Ashrafpour M, Moghadamnia AA, Hosseinzadeh S (2018) Piperine restores streptozotocin-induced cognitive impairments: insights into oxidative balance in cerebrospinal fluid and hippocampus. Behav Brain Res 337:131–138
Article PubMed CAS Google Scholar
Khosravi M, Poursaleh A, Ghasempour G, Farhad S, Najafi M (2019) The effects of oxidative stress on the development of atherosclerosis. Biol Chem 400:711–732
Comments (0)