Phytosterols from Rosaceae Species as Dual Modulators of Neuroinflammation and Induced Pluripotency

Aboul-Soud MA, Alzahrani AJ, Mahmoud A (2021) Induced pluripotent stem cells (iPSCs)—roles in regenerative therapies, disease modelling and drug screening. Cells 10(9):2319

Article  PubMed  PubMed Central  CAS  Google Scholar 

Adebiyi OE et al (2019) Βeta-sitosterol enhances motor coordination, attenuates memory loss and demyelination in a vanadium-induced model of experimental neurotoxicity. Pathophysiology 26(1):21–29

Article  PubMed  CAS  Google Scholar 

Adetuyi BO et al (2021) Neurorestorative roles of microgliosis and astrogliosis in neuroinflammation and neurodegeneration. SciCom J Med Appl Med Sci 1(1):1–5

Article  Google Scholar 

Banjara M, Ghosh C (2017) Sterile neuroinflammation and strategies for therapeutic intervention. Int J Inflamm 2017(1):8385961

Google Scholar 

Barrett T et al (2005) NCBI GEO: mining millions of expression profiles—database and tools. Nucleic Acids Res 33, Issue suppl_1. D562–D566.

Bradford PG, Awad AB (2007) Phytosterols as anticancer compounds. Mol Nutr Food Res 51(2):161–170

Article  PubMed  CAS  Google Scholar 

Brouwer M, Zhou H, Nadif N, Kasri (2016) Choices for induction of pluripotency: recent developments in human induced pluripotent stem cell reprogramming strategies. Stem Cell Reviews Rep 12(1):54–72

Article  CAS  Google Scholar 

Brunt KR, Weisel RD, Li R-K (2012) Stem cells and regenerative medicine—future perspectives. Can J Physiol Pharmacol 90(3):327–335

Article  PubMed  CAS  Google Scholar 

Calderón-Garcidueñas L et al (2012) Neuroinflammation, hyperphosphorylated tau, diffuse amyloid plaques, and down-regulation of the cellular prion protein in air pollution exposed children and young adults. J Alzheimers Dis 28(1):93–107

Callender JA, Newton AC (2017) Conventional protein kinase C in the brain: 40 years later. Neuron Signal 1(2):NS20160005

Article  Google Scholar 

Canese K, Weis SJTNh (2013) PubMed: the bibliographic database 2(1) Page No:1-16

Chen Z-R et al (2022) Role of cholinergic signaling in Alzheimer’s disease. Molecules 27(6):1816

Article  PubMed  PubMed Central  CAS  Google Scholar 

Daina A, Michielin O, Zoete VJSr (2017) SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules 7(1):42717

Dalal D, Singh L, Singh A (2024) Mechanistic insight unrevealing the potential of diadzein in ameliorating the alzheimer’s disease. Front Health Inf 13(3)

Dallakyan S (2015) A.J.J.C.b.m. Olson, and protocols, Small-molecule library screening by docking with PyRx pp. 243–250

Dundas J et al (2006) CASTp: computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues. Nucleic Acids Res 34(suppl2):W116–W118

E Smoot M et al (2011) Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 27(3):431–432

Gao H-M, Hong J-S (2008) Why neurodegenerative diseases are progressive: uncontrolled inflammation drives disease progression. Trends Immunol 29(8):357–365

Article  PubMed  PubMed Central  CAS  Google Scholar 

Gfeller D et al (2014) Swisstargetprediction: a web server for target prediction of bioactive small molecules. Nucleic Acids Res 42(W1):W32–W38

Guzman-Martinez L et al (2019) Neuroinflammation as a common feature of neurodegenerative disorders. Front Pharmacol 10:1008

Article  PubMed  PubMed Central  CAS  Google Scholar 

Henley MJ, Koehler AN (2021) Advances in targeting ‘undruggable’transcription factors with small molecules. Nat Rev Drug Discov 20(9):669–688

Article  PubMed  CAS  Google Scholar 

Hensley K (2010) Neuroinflammation in Alzheimer’s disease: mechanisms, pathologic consequences, and potential for therapeutic manipulation. J Alzheimers Dis 21(1):1–14

Article  PubMed  PubMed Central  CAS  Google Scholar 

Hong H, Kim BS, Im H-I (2016) Pathophysiological role of neuroinflammation in neurodegenerative diseases and psychiatric disorders. Int Neurourol J 20(Suppl 1):S2

Article  PubMed  PubMed Central  Google Scholar 

Hossini AM et al (2016) PI3K/AKT signaling pathway is essential for survival of induced pluripotent stem cells. PLoS ONE 11(5):e0154770

Article  PubMed  PubMed Central  Google Scholar 

Huang DW et al (2007) DAVID bioinformatics resources: expanded annotation database and novel algorithms to better extract biology from large gene lists. Nucleic Acids Res 35(suppl2):W169–W175

Hussen BM et al (2024) Revolutionizing medicine: recent developments and future prospects in stem-cell therapy. Int J Surg 110(12):8002–8024

Article  PubMed  PubMed Central  Google Scholar 

Ihlenfeldt W, Opportunities F (2018) PubChem pp. 245–258

James T et al (2015) Determining the architecture of a protein–DNA complex by combining FeBABE cleavage analyses, 3-D printed structures, and the ICM Molsoft program pp. 29–40

Jefrei E et al (2024) Phytosterol and phytostanol-mediated epigenetic changes in cancer and other non-communicable diseases: a systematic review. Br J Nutr 131(6):935–943

Article  PubMed  CAS  Google Scholar 

Jie F et al (2022) Stigmasterol attenuates inflammatory response of microglia via NF-κB and NLRP3 signaling by AMPK activation. Biomed Pharmacother 153:113317

Article  PubMed  CAS  Google Scholar 

Johnstone M, Gearing AJ, Miller KM (1999) A central role for astrocytes in the inflammatory response to β-amyloid; chemokines, cytokines and reactive oxygen species are produced. J Neuroimmunol 93(1–2):182–193

Article  PubMed  CAS  Google Scholar 

Khan AU et al (2023) The critical role of the phytosterols in modulating tumor microenvironment via multiple signaling: a comprehensive molecular approach. Phytother Res 37(4):1606–1623

Article  PubMed  Google Scholar 

Kim E, Mok HK, Hyun TK (2022) Variations in the antioxidant, anticancer, and anti-inflammatory properties of different Rosa rugosa organ extracts. Agronomy 12(2):238

Article  CAS  Google Scholar 

Kuhn M et al (2014) STITCH 4: integration of protein–chemical interactions with user data. Nucleic Acids Res 42D1:D401–D407

Li J et al (2021) Characteristics of the PI3K/AKT and MAPK/ERK pathways involved in the maintenance of self-renewal in lung cancer stem-like cells. Int J Biol Sci 17(5):1191

Article  PubMed  PubMed Central  CAS  Google Scholar 

Li X et al (2022) The bioavailability and biological activities of phytosterols as modulators of cholesterol metabolism. Molecules 27(2):523

Article  PubMed  PubMed Central  CAS  Google Scholar 

Lin T, Wu S (2015) Reprogramming with small molecules instead of exogenous transcription factors. Stem Cells Int 2015(1):794632

PubMed  PubMed Central  Google Scholar 

Marei HE, Khan MUA, Hasan A (2023) Potential use of iPSCs for disease modeling, drug screening, and cell-based therapy for alzheimer’s disease. Cell Mol Biol Lett 28:98. 1

Mayr P (2007) A.K.J.O.i.r. Walter. Exploratory Study Google Scholar 31(6):814–830

Google Scholar 

Mering Cv et al (2003) STRING: a database of predicted functional associations between proteins. Nucleic Acids Res 31(1):258–261

Mohanraj K et al (2018) IMPPAT: A curated database of Indian Medicinal Plants, Phytochemistry and Therapeutics. Scientific Reports 8(1):4329

Nelson TJ, Martinez-Fernandez A, Terzic A (2010) Induced pluripotent stem cells: developmental biology to regenerative medicine. Nat Rev Cardiol 7(12):700–710

Article  PubMed  Google Scholar 

NEUROTRANSMISSION C (2004) Butyrylcholinesterase, cholinergic neurotransmission and the pathology of alzheimer S disease. Drugs Today (Barc) 40(8):711–721

Article  Google Scholar 

Nie B et al (2012) Cellular reprogramming: a small molecule perspective. Curr Opin Cell Biol 24(6):784–792

Article  PubMed  PubMed Central  CAS  Google Scholar 

Pence HE, Williams A (2010) ChemSpider: an online chemical information resource. ACS

Rodríguez-Gómez JA et al (2020) Microglia: agents of the CNS pro-inflammatory response. Cells 9(7):1717

Article  PubMed  PubMed Central  Google Scholar 

Rose PW et al (2016) The RCSB protein data bank: integrative view of protein, gene and 3D structural information p. gkw1000

Shinbo Y et al (2006) KNApSAcK: a comprehensive species-metabolite relationship database pp. 165–181

Singh A, Kabra A, Singh L (2025a) Role of formononetin (isoflavone) in parkinson’s disease. Lett Appl NanoBiosci 14:72

Google Scholar 

Singh A, Singh L, Dalal D (2025b) Neuroprotective potential of Hispidulin and diosmin: a review of molecular mechanisms. Metab Brain Dis 40(5):188

Article  PubMed  CAS  Google Scholar 

Stoltz J-F et al (2015) Stem cells and regenerative medicine: myth or reality of the 21th century. Stem Cells Int 20151:p734731

Google Scholar 

Studio DJA (2008) Discovery studio 420

Szwajgier D, Borowiec K, Pustelniak K (2017) The neuroprotective effects of phenolic acids: molecular mechanism of action. Nutrients 9(5):477

Comments (0)

No login
gif