Comparative analysis of the effects of PSPH and PHGDH inhibitors on tumor cell proliferation

Organization WH (2024) Global cancer burden growing, amidst mounting need for services. World Health Organization, Geneva, Switzerland

Google Scholar 

McNamee MJ, Michod D, Niklison-Chirou MV (2021) Can small molecular inhibitors that stop de novo serine synthesis be used in cancer treatment? Cell Death Discov 7(1):87

Article  PubMed  PubMed Central  CAS  Google Scholar 

Geeraerts SL et al (2021) The ins and outs of serine and glycine metabolism in cancer. Nat Metab 3(2):131–141

Article  PubMed  CAS  Google Scholar 

Pavlova NN, Thompson CB (2016) The emerging hallmarks of cancer metabolism. Cell Metab 23(1):27–47

Article  PubMed  PubMed Central  CAS  Google Scholar 

Yang M, Vousden KH (2016) Serine and one-carbon metabolism in cancer. Nat Rev Cancer 16(10):650–662

Article  PubMed  CAS  Google Scholar 

Jain M et al (2012) Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation. Science 336(6084):1040–1044

Article  PubMed  PubMed Central  CAS  Google Scholar 

Shunxi W et al (2023) Serine metabolic reprogramming in tumorigenesis, tumor immunity, and clinical treatment. Adv Nutr 14(5):1050–1066

Article  PubMed  PubMed Central  Google Scholar 

Possemato R et al (2011) Functional genomics reveal that the serine synthesis pathway is essential in breast cancer. Nature 476(7360):346–350

Article  PubMed  PubMed Central  CAS  Google Scholar 

Zhang B et al (2017) PHGDH defines a metabolic subtype in lung adenocarcinomas with poor prognosis. Cell Rep 19(11):2289–2303

Article  PubMed  CAS  Google Scholar 

Zhu J et al (2016) High expression of PHGDH predicts poor prognosis in non-small cell lung cancer. Transl Oncol 9(6):592–599

Article  PubMed  PubMed Central  Google Scholar 

Li AM, Ye J (2020) The PHGDH enigma: do cancer cells only need serine or also a redox modulator? Cancer Lett 476:97–105

Article  PubMed  PubMed Central  CAS  Google Scholar 

Lee CM et al (2024) PHGDH: a novel therapeutic target in cancer. Exp Mol Med 56(7):1513–1522

Article  PubMed  PubMed Central  Google Scholar 

Chen J et al (2013) Phosphoglycerate dehydrogenase is dispensable for breast tumor maintenance and growth. Oncotarget 4(12):2502–2511

Article  PubMed  PubMed Central  Google Scholar 

Sha L, Wang Y, Meng P et al (2025) Pharmacological inhibition of PSPH reduces serine levels and epileptic seizures. Nat Chem Biol. https://doi.org/10.1038/s41589-025-01920-5

Pacold ME et al (2016) A PHGDH inhibitor reveals coordination of serine synthesis and one-carbon unit fate. Nat Chem Biol 12(6):452–458

Article  PubMed  PubMed Central  CAS  Google Scholar 

Chen L, Liu S, Tao Y (2020) Regulating tumor suppressor genes: post-translational modifications. Signal Transduct Target Ther 5(1):90

Article  PubMed  PubMed Central  CAS  Google Scholar 

Wei L et al (2019) Genome-wide CRISPR/Cas9 library screening identified PHGDH as a critical driver for Sorafenib resistance in HCC. Nat Commun 10(1):4681

Article  PubMed  PubMed Central  Google Scholar 

Reid MA et al (2018) Serine synthesis through PHGDH coordinates nucleotide levels by maintaining central carbon metabolism. Nat Commun 9(1):5442

Article  PubMed  PubMed Central  CAS  Google Scholar 

Maddocks OD et al (2016) Serine metabolism supports the methionine cycle and DNA/RNA methylation through de novo ATP synthesis in cancer cells. Mol Cell 61(2):210–221

Article  PubMed  PubMed Central  CAS  Google Scholar 

Birsoy K, Garraway LA, Mino-Kenudson M (2012) Functional genomics reveals serine synthesis is essential in PHGDH-amplified breast cancer. Nature 476(7360):346–350

Google Scholar 

Sullivan MR et al (2019) Increased serine synthesis provides an advantage for tumors arising in tissues where serine levels are limiting. Cell Metab 29(6):1410-1421.e4

Article  PubMed  PubMed Central  CAS  Google Scholar 

Muthusamy T et al (2020) Serine restriction alters sphingolipid diversity to constrain tumour growth. Nature 586(7831):790–795

Article  PubMed  PubMed Central  CAS  Google Scholar 

Cai Y et al (2023) α-KG inhibits tumor growth of diffuse large B-cell lymphoma by inducing ROS and TP53-mediated ferroptosis. Cell Death Discov 9(1):182

Article  PubMed  PubMed Central  CAS  Google Scholar 

Hwang IY et al (2016) Psat1-dependent fluctuations in α-ketoglutarate affect the timing of ESC differentiation. Cell Metab 24(3):494–501

Article  PubMed  CAS  Google Scholar 

Yang L, Venneti S, Nagrath D (2017) Glutaminolysis: a hallmark of cancer metabolism. Annu Rev Biomed Eng 19:163–194

Article  PubMed  CAS  Google Scholar 

Qiu Y et al (2024) The unique catalytic properties of PSAT1 mediate metabolic adaptation to glutamine blockade. Nat Metab 6(8):1529–1548

Article  PubMed  PubMed Central  CAS  Google Scholar 

Cairns RA, Harris IS, Mak TW (2011) Regulation of cancer cell metabolism. Nat Rev Cancer 11(2):85–95

Article  PubMed  CAS  Google Scholar 

Imai S, Guarente L (2014) NAD+ and sirtuins in aging and disease. Trends Cell Biol 24(8):464–471

Article  PubMed  PubMed Central  CAS  Google Scholar 

Furuya S (2008) An essential role for de novo biosynthesis of L-serine in CNS development. Asia Pac J Clin Nutr 17(Suppl 1):312–315

PubMed  CAS  Google Scholar 

Yoshida K et al (2004) Targeted disruption of the mouse 3-phosphoglycerate dehydrogenase gene causes severe neurodevelopmental defects and results in embryonic lethality. J Biol Chem 279(5):3573–3577

Article  PubMed  CAS  Google Scholar 

Comments (0)

No login
gif