Beltran H (2014) The N-myc oncogene: maximizing its targets, regulation, and therapeutic potential. Mol Cancer Res 12(6):815–822
Article PubMed CAS Google Scholar
Das SK, Lewis BA, Levens D (2023) MYC: a complex problem. Trends Cell Biol 33(3):235–246
Article PubMed CAS Google Scholar
Zhou, Y., et al., Targeting Myc interacting proteins as a winding path in cancer therapy. Frontiers in Pharmacology, 2021. Volume 12 - 2021.
Tu WB et al (2015) Myc and its interactors take shape. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms 1849(5):469–483
Article PubMed CAS Google Scholar
Lourenco C et al (2021) MYC protein interactors in gene transcription and cancer. Nat Rev Cancer 21(9):579–591
Article PubMed CAS Google Scholar
Li J et al (2024) Trib3 promotes the progression of renal cell carcinoma by upregulating the lipid droplet-associated protein PLIN2. Cell Death Dis 15(4):240
Article PubMed PubMed Central CAS Google Scholar
Li K et al (2020) Trib3 promotes MYC-associated lymphoma development through suppression of UBE3B-mediated MYC degradation. Nat Commun 11(1):6316
Article PubMed PubMed Central CAS Google Scholar
D’Andrea A et al (2016) The mitochondrial translation machinery as a therapeutic target in Myc-driven lymphomas. Oncotarget 7(45):72415–72430
Article PubMed PubMed Central Google Scholar
Garralda E et al (2024) MYC targeting by OMO-103 in solid tumors: a phase 1 trial. Nat Med 30(3):762–771
Article PubMed PubMed Central CAS Google Scholar
Su M-X et al (2022) C-MYC-mediated TRIB3/P62+ aggresomes accumulation triggers paraptosis upon the combination of everolimus and ginsenoside Rh2. Acta Pharm Sin B 12(3):1240–1253
Article PubMed CAS Google Scholar
Sawyer N, Watkins AM, Arora PS (2017) Protein domain mimics as modulators of protein–protein interactions. Acc Chem Res 50(6):1313–1322
Article PubMed PubMed Central CAS Google Scholar
Jamieson SA et al (2018) Substrate binding allosterically relieves autoinhibition of the pseudokinase TRIB1. Sci Signal. https://doi.org/10.1126/scisignal.aau0597
Article PubMed PubMed Central Google Scholar
Uljon S et al (2016) Structural basis for substrate selectivity of the E3 ligase COP1. Structure 24(5):687–696
Article PubMed PubMed Central CAS Google Scholar
Murphy JM et al (2015) Molecular mechanism of CCAAT-enhancer binding protein recruitment by the TRIB1 pseudokinase. Structure 23(11):2111–2121
Article PubMed CAS Google Scholar
Stefanovska B, André F, Fromigué O (2021) Tribbles pseudokinase 3 regulation and contribution to cancer. Cancers (Basel). https://doi.org/10.3390/cancers13081822
Bowers AJ, Scully S, Boylan JF (2003) SKIP3, a novel Drosophila tribbles ortholog, is overexpressed in human tumors and is regulated by hypoxia. Oncogene 22(18):2823–2835
Article PubMed CAS Google Scholar
Kiss-Toth E et al (2004) Human tribbles, a protein family controlling mitogen-activated protein kinase cascades. J Biol Chem 279(41):42703–42708
Article PubMed CAS Google Scholar
Bhuyan, P., et al., Computational analysis of MYC gene variants: structural and functional impact of non-synonymous SNPs. Journal of Applied Genetics, 2024.
Wang S et al (2024) VHL suppresses UBE3B-mediated breast tumor growth and metastasis. Cell Death Dis 15(6):446
Article PubMed PubMed Central CAS Google Scholar
Wu L et al (2019) Loss of FOXP3 and TSC1 accelerates prostate cancer progression through synergistic transcriptional and posttranslational regulation of c-MYC. Cancer Res 79(7):1413–1425
Article PubMed PubMed Central CAS Google Scholar
Zhang Q et al (2020) The MAP3K13-TRIM25-FBXW7α axis affects c-Myc protein stability and tumor development. Cell Death Differ 27(2):420–433
Article PubMed CAS Google Scholar
Wang C et al (2021) Alternative approaches to target Myc for cancer treatment. Signal Transduct Target Ther 6(1):117
Article PubMed PubMed Central CAS Google Scholar
Shang, S., et al., TRIB3 reduces CD8+ T cell infiltration and induces immune evasion by repressing the STAT1-CXCL10 axis in colorectal cancer. Science Translational Medicine, 2022. 14(626): p. eabf0992.
Massó-Vallés D, Soucek L (2020) Blocking myc to treat cancer: reflecting on two decades of Omomyc. Cells 9(4):883
Article PubMed PubMed Central Google Scholar
Garralda E et al (2022) Dose escalation study of OMO-103, a first in class pan-MYC-inhibitor in patients (pts) with advanced solid tumors. Eur J Cancer 174:S5–S6
Zou Q et al (2023) E3 ubiquitin ligases in cancer stem cells: key regulators of cancer hallmarks and novel therapeutic opportunities. Cell Oncol 46(3):545–570
Welcker M et al (2004) The Fbw7 tumor suppressor regulates glycogen synthase kinase 3 phosphorylation-dependent c-Myc protein degradation. Proc Natl Acad Sci U S A 101(24):9085–9090
Article PubMed PubMed Central CAS Google Scholar
Yada, M., et al., Phosphorylation‐dependent degradation of c‐Myc is mediated by the F‐box protein Fbw7. The EMBO Journal, 2004. 23(10): p. 2116–2125–2125.
Cai Q et al (2015) MYC-driven aggressive B-cell lymphomas: biology, entity, differential diagnosis and clinical management. Oncotarget 6(36):38591–38616
Article PubMed PubMed Central Google Scholar
Wang Y et al (2023) UBE3B promotes breast cancer progression by antagonizing HIF-2α degradation. Oncogene 42(46):3394–3406
Article PubMed CAS Google Scholar
Sahin I et al (2019) Glycogen synthase kinase-3 beta inhibitors as novel cancer treatments and modulators of antitumor immune responses. Cancer Biol Ther 20(8):1047–1056
Article PubMed PubMed Central CAS Google Scholar
Vecchio E et al (2020) Insights about MYC and apoptosis in B-lymphomagenesis: an update from murine models. Int J Mol Sci 21(12):4265
Article PubMed PubMed Central CAS Google Scholar
Lim T-Y et al (2023) Txnip loss expands Myc-dependent transcriptional programs by increasing Myc genomic binding. PLoS Biol 21(3):e3001778
Article PubMed PubMed Central CAS Google Scholar
Qiu X et al (2022) MYC drives aggressive prostate cancer by disrupting transcriptional pause release at androgen receptor targets. Nat Commun 13(1):2559
Comments (0)