Glorieux C, Liu S, Trachootham D, Huang P (2024) Targeting ROS in cancer: rationale and strategies. Nat Rev Drug Discovery 23:583–606. https://doi.org/10.1038/s41573-024-00979-4
Article PubMed CAS Google Scholar
Sies H et al (2022) Defining roles of specific reactive oxygen species (ROS) in cell biology and physiology. Nat Rev Mol Cell Biol 23:499–515. https://doi.org/10.1038/s41580-022-00456-z
Article PubMed CAS Google Scholar
Xia MH et al (2020) p62 Suppressed VK3-induced oxidative damage through Keap1/Nrf2 pathway in human ovarian cancer cells. J Cancer 11:1299–1307. https://doi.org/10.7150/jca.34423
Article PubMed PubMed Central CAS Google Scholar
Maher J, Yamamoto M (2010) The rise of antioxidant signaling–the evolution and hormetic actions of Nrf2. Toxicol Appl Pharmacol 244:4–15. https://doi.org/10.1016/j.taap.2010.01.011
Article PubMed CAS Google Scholar
Itoh K et al (1997) An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem Biophys Res Commun 236:313–322. https://doi.org/10.1006/bbrc.1997.6943
Itoh K, Tong KI, Yamamoto M (2004) Molecular mechanism activating Nrf2-Keap1 pathway in regulation of adaptive response to electrophiles. Free Radic Biol Med 36:1208–1213. https://doi.org/10.1016/j.freeradbiomed.2004.02.075
Article PubMed CAS Google Scholar
Kobayashi A et al (2004) Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2. Mol Cell Biol 24:7130–7139. https://doi.org/10.1128/MCB.24.16.7130-7139.2004
Article PubMed PubMed Central CAS Google Scholar
Chan K, Han XD, Kan YW (2001) An important function of Nrf2 in combating oxidative stress: detoxification of acetaminophen. Proc Natl Acad Sci U S A 98:4611–4616. https://doi.org/10.1073/pnas.081082098
Article PubMed PubMed Central CAS Google Scholar
Yamamoto M, Kensler TW, Motohashi H (2018) The KEAP1-NRF2 system: a thiol-based sensor-effector apparatus for maintaining redox homeostasis. Physiol Rev 98:1169–1203. https://doi.org/10.1152/physrev.00023.2017
Article PubMed PubMed Central CAS Google Scholar
Suzuki T, Yamamoto M (2015) Molecular basis of the Keap1-Nrf2 system. Free Radic Biol Med 88:93–100. https://doi.org/10.1016/j.freeradbiomed.2015.06.006
Article PubMed CAS Google Scholar
Hayes JD, Dinkova-Kostova AT (2014) The Nrf2 regulatory network provides an interface between redox and intermediary metabolism. Trends Biochem Sci 39:199–218. https://doi.org/10.1016/j.tibs.2014.02.002
Article PubMed CAS Google Scholar
Jimenez-Villegas J et al (2021) NRF2 as a therapeutic opportunity to impact in the molecular roadmap of ALS. Free Radic Biol Med 173:125–141. https://doi.org/10.1016/j.freeradbiomed.2021.07.022
Article PubMed CAS Google Scholar
Fukutomi T, Takagi K, Mizushima T, Ohuchi N, Yamamoto M (2014) Kinetic, thermodynamic, and structural characterizations of the association between Nrf2-DLGex degron and Keap1. Mol Cell Biol 34:832–846. https://doi.org/10.1128/MCB.01191-13
Article PubMed PubMed Central CAS Google Scholar
Horie Y et al (2021) Molecular basis for the disruption of Keap1-Nrf2 interaction via Hinge & Latch mechanism. Commun Biol 4:576. https://doi.org/10.1038/s42003-021-02100-6
Article PubMed PubMed Central CAS Google Scholar
Wang H et al (2013) RXRalpha inhibits the NRF2-ARE signaling pathway through a direct interaction with the Neh7 domain of NRF2. Cancer Res 73:3097–3108. https://doi.org/10.1158/0008-5472.CAN-12-3386
Article PubMed CAS Google Scholar
Adinolfi S et al (2023) The KEAP1-NRF2 pathway: targets for therapy and role in cancer. Redox Biol 63:102726. https://doi.org/10.1016/j.redox.2023.102726
Article PubMed PubMed Central CAS Google Scholar
Rojo de la Vega M, Chapman E, Zhang DD (2018) NRF2 and the hallmarks of cancer. Cancer Cell 34:21–43. https://doi.org/10.1016/j.ccell.2018.03.022
Lignitto L et al (2019) Nrf2 Activation promotes lung cancer metastasis by inhibiting the degradation of Bach1. Cell 178:316–329 e318. https://doi.org/10.1016/j.cell.2019.06.003
Rada P et al (2011) SCF/beta-TrCP promotes glycogen synthase kinase 3-dependent degradation of the Nrf2 transcription factor in a Keap1-independent manner. Mol Cell Biol 31:1121–1133. https://doi.org/10.1128/MCB.01204-10
Article PubMed PubMed Central CAS Google Scholar
Zhang J, Zhang M, Tatar M, Gong R (2025) Keap1-independent Nrf2 regulation: a novel therapeutic target for treating kidney disease. Redox Biol 82:103593. https://doi.org/10.1016/j.redox.2025.103593
Article PubMed PubMed Central CAS Google Scholar
Suzuki T, Motohashi H, Yamamoto M (2013) Toward clinical application of the Keap1–Nrf2 pathway. Trends Pharmacol Sci 34:340–346. https://doi.org/10.1016/j.tips.2013.04.005
Article PubMed CAS Google Scholar
Zhang DD, Hannink M (2003) Distinct cysteine residues in Keap1 are required for Keap1-dependent ubiquitination of Nrf2 and for stabilization of Nrf2 by chemopreventive agents and oxidative stress. Mol Cell Biol 23:8137–8151. https://doi.org/10.1128/MCB.23.22.8137-8151.2003
Article PubMed PubMed Central CAS Google Scholar
Sato M et al (2024) Sensor systems of KEAP1 uniquely detecting oxidative and electrophilic stresses separately in vivo. Redox Biol 77:103355. https://doi.org/10.1016/j.redox.2024.103355
Article PubMed PubMed Central CAS Google Scholar
Dinkova-Kostova AT, Hakomaki H, Levonen AL (2024) Electrophilic metabolites targeting the KEAP1/NRF2 partnership. Curr Opin Chem Biol 78:102425. https://doi.org/10.1016/j.cbpa.2024.102425
Article PubMed CAS Google Scholar
McMahon M, Lamont DJ, Beattie KA, Hayes JD (2010) Keap1 perceives stress via three sensors for the endogenous signaling molecules nitric oxide, zinc, and alkenals. Proc Natl Acad Sci U S A 107:18838–18843. https://doi.org/10.1073/pnas.1007387107
Article PubMed PubMed Central Google Scholar
Shilovsky GA, Dibrova DV (2023) Regulation of cell proliferation and Nrf2-mediated antioxidant defense: conservation of Keap1 cysteines and Nrf2 binding site in the context of the evolution of KLHL family. Life (Basel) 13. https://doi.org/10.3390/life13041045
Geertsema S et al (2023) The NRF2/Keap1 pathway as a therapeutic target in inflammatory bowel disease. Trends Mol Med 29:830–842. https://doi.org/10.1016/j.molmed.2023.07.008
Rada P et al (2012) Structural and functional characterization of Nrf2 degradation by the glycogen synthase kinase 3/beta-TrCP axis. Mol Cell Biol 32:3486–3499. https://doi.org/10.1128/MCB.00180-12
Article PubMed PubMed Central CAS Google Scholar
Wu T et al (2014) Hrd1 suppresses Nrf2-mediated cellular protection during liver cirrhosis. Genes Dev 28:708–722. https://doi.org/10.1101/gad.238246.114
Article PubMed PubMed Central CAS Google Scholar
Zgorzynska E, Dziedzic B, Walczewska A (2021) An overview of the Nrf2/ARE pathway and its role in neurodegenerative diseases. Int J Mol Sci 22. https://doi.org/10.3390/ijms22179592
Sykiotis GP, Bohmann D (2010) Stress-activated cap’n’collar transcription factors in aging and human disease. Sci Signal 3:re3. https://doi.org/10.1126/scisignal.3112re3
Pandey P et al (2017) The see-saw of
Comments (0)