Evaluation of the anti-leukemia activity and underlying mechanisms of the novel perinucleolar compartment inhibitor CTI-2 in acute myeloid leukemia

Mohamed Jiffry MZ, Kloss R, Ahmed-Khan M, Carmona-Pires F, Okam N, Weeraddana P et al (2023) A review of treatment options employed in relapsed/refractory AML. Hematology 28(1):2196482. https://doi.org/10.1080/16078454.2023.2196482

Article  PubMed  CAS  Google Scholar 

Ley TJ, Miller C, Ding L, Raphael BJ, Mungall AJ, Robertson A et al (2013) Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med 368(22):2059–2074. https://doi.org/10.1056/NEJMoa1301689

Article  PubMed  CAS  Google Scholar 

Rosnet O, Schiff C, Pébusque MJ, Marchetto S, Tonnelle C, Toiron Y et al (1993) Human FLT3/FLK2 gene: cDNA cloning and expression in hematopoietic cells. Blood 82(4):1110–1119

Article  PubMed  CAS  Google Scholar 

Diral E, Furnari G, Bruno A, Greco R, Clerici D, Marktel S et al (2024) Sorafenib maintenance in FLT3-ITD mutated AML after allogeneic HCT: a real-world, single-center experience. Front Oncol 14:1391743. https://doi.org/10.3389/fonc.2024.1391743

Article  PubMed  PubMed Central  CAS  Google Scholar 

Kiyoi H, Kawashima N, Ishikawa Y (2020) FLT3 mutations in acute myeloid leukemia: therapeutic paradigm beyond inhibitor development. Cancer Sci 111(2):312–322. https://doi.org/10.1111/cas.14274

Article  PubMed  CAS  Google Scholar 

Travaglini S, Gurnari C, Ottone T, Voso MT (2024) Advances in the pathogenesis of FLT3 -mutated acute myeloid leukemia and targeted treatments. Curr Opin Oncol 36(6):569–576. https://doi.org/10.1097/cco.0000000000001094

Article  PubMed  PubMed Central  CAS  Google Scholar 

Frankowski KJ, Wang C, Patnaik S, Schoenen FJ, Southall N, Li D et al (2018) Metarrestin, a perinucleolar compartment inhibitor, effectively suppresses metastasis. Sci Transl Med 10(441). https://doi.org/10.1126/scitranslmed.aap8307

Ke J, Han W, Meng F, Guo F, Wang Y, Wang L (2021) CTI-2 inhibits metastasis and epithelial-mesenchymal transition of breast Cancer cells by modulating MAPK signaling pathway. Int J Mol Sci 22(22). https://doi.org/10.3390/ijms222212229

Kumar B, Koul S, Petersen J, Khandrika L, Hwa JS, Meacham RB et al (2010) p38 mitogen-activated protein kinase-driven MAPKAPK2 regulates invasion of bladder cancer by modulation of MMP-2 and MMP-9 activity. Cancer Res 70(2):832–841. https://doi.org/10.1158/0008-5472.Can-09-2918

Article  PubMed  CAS  Google Scholar 

Gurgis FM, Ziaziaris W, Munoz L (2014) Mitogen-activated protein kinase-activated protein kinase 2 in neuroinflammation, heat shock protein 27 phosphorylation, and cell cycle: role and targeting. Mol Pharmacol 85(2):345–356. https://doi.org/10.1124/mol.113.090365

Article  PubMed  CAS  Google Scholar 

Chen LS, Balakrishnan K, Gandhi V (2010) Inflammation and survival pathways: chronic lymphocytic leukemia as a model system. Biochem Pharmacol 80(12):1936–1945. https://doi.org/10.1016/j.bcp.2010.07.039

Article  PubMed  PubMed Central  CAS  Google Scholar 

Cheng H, Huang C, Xu X, Hu X, Gong S, Tang G et al (2017) PIM-1 mRNA expression is a potential prognostic biomarker in acute myeloid leukemia. J Translational Med 15(1):179. https://doi.org/10.1186/s12967-017-1287-4

Article  CAS  Google Scholar 

Bellon M, Nicot C (2023) Targeting pim kinases in hematological cancers: molecular and clinical review. Mol Cancer 22(1):18. https://doi.org/10.1186/s12943-023-01721-1

Article  PubMed  PubMed Central  CAS  Google Scholar 

Luo H, Li Q, O’Neal J, Kreisel F, Le Beau MM, Tomasson MH (2005) c-Myc rapidly induces acute myeloid leukemia in mice without evidence of lymphoma-associated antiapoptotic mutations. Blood 106(7):2452–2461. https://doi.org/10.1182/blood-2005-02-0734

Article  PubMed  CAS  Google Scholar 

Hoffman B, Amanullah A, Shafarenko M, Liebermann DA (2002) The proto-oncogene c-myc in hematopoietic development and leukemogenesis. Oncogene 21(21):3414–3421. https://doi.org/10.1038/sj.onc.1205400

Article  PubMed  CAS  Google Scholar 

Dhanasekaran R, Deutzmann A, Mahauad-Fernandez WD, Hansen AS, Gouw AM, Felsher DW (2022) The MYC oncogene - the grand orchestrator of cancer growth and immune evasion. Nat Rev Clin Oncol 19(1):23–36. https://doi.org/10.1038/s41571-021-00549-2

Article  PubMed  CAS  Google Scholar 

Delgado MD, Albajar M, Gomez-Casares MT, Batlle A, León J (2013) MYC oncogene in myeloid neoplasias. Clin Transl Oncol 15(2):87–94. https://doi.org/10.1007/s12094-012-0926-8

Article  PubMed  CAS  Google Scholar 

Kalkat M, De Melo J, Hickman KA, Lourenco C, Redel C, Resetca D et al (2017) MYC deregulation in primary human cancers. Genes (Basel) 8(6). https://doi.org/10.3390/genes8060151

Ohanian M, Rozovski U, Kanagal-Shamanna R, Abruzzo LV, Loghavi S, Kadia T et al (2019) MYC protein expression is an important prognostic factor in acute myeloid leukemia. Leuk Lymphoma 60(1):37–48. https://doi.org/10.1080/10428194.2018.1464158

Article  PubMed  CAS  Google Scholar 

Bulaeva E, Pellacani D, Nakamichi N, Hammond CA, Beer PA, Lorzadeh A et al (2020) MYC-induced human acute myeloid leukemia requires a continuing IL-3/GM-CSF costimulus. Blood 136(24):2764–2773. https://doi.org/10.1182/blood.2020006374

Article  PubMed  CAS  Google Scholar 

Salvatori B, Iosue I, Djodji Damas N, Mangiavacchi A, Chiaretti S, Messina M et al (2011) Critical role of c-Myc in Acute myeloid leukemia involving direct regulation of miR-26a and histone methyltransferase EZH2. Genes Cancer 2(5):585–592. https://doi.org/10.1177/1947601911416357

Article  PubMed  PubMed Central  CAS  Google Scholar 

Madden SK, de Araujo AD, Gerhardt M, Fairlie DP, Mason JM (2021) Taking the myc out of cancer: toward therapeutic strategies to directly inhibit c-Myc. Mol Cancer 20(1):3. https://doi.org/10.1186/s12943-020-01291-6

Article  PubMed  PubMed Central  Google Scholar 

Wei SJ, Nguyen TH, Yang IH, Mook DG, Makena MR, Verlekar D et al (2020) MYC transcription activation mediated by OCT4 as a mechanism of resistance to 13-cisRA-mediated differentiation in neuroblastoma. Cell Death Dis 11(5):368. https://doi.org/10.1038/s41419-020-2563-4

Article  PubMed  PubMed Central  CAS  Google Scholar 

Zhang Y, Wang Z, Li X, Magnuson NS (2008) Pim kinase-dependent inhibition of c-Myc degradation. Oncogene 27(35):4809–4819. https://doi.org/10.1038/onc.2008.123

Article  PubMed  CAS  Google Scholar 

Zhang C, Qie Y, Yang T, Wang L, Du E, Liu Y et al (2019) Kinase PIM1 promotes prostate cancer cell growth via c-Myc-RPS7-driven ribosomal stress. Carcinogenesis 40(1):52–60. https://doi.org/10.1093/carcin/bgy126

Article  PubMed  CAS  Google Scholar 

Gao X, Liu X, Lu Y, Wang Y, Cao W, Liu X et al (2019) PIM1 is responsible for IL-6-induced breast cancer cell EMT and stemness via c-myc activation. Breast Cancer 26(5):663–671. https://doi.org/10.1007/s12282-019-00966-3

Article  PubMed  Google Scholar 

Liu S, Qiao X, Wu S, Gai Y, Su Y, Edwards H et al (2022) c-Myc plays a critical role in the antileukemic activity of the mcl-1-selective inhibitor AZD5991 in acute myeloid leukemia. Apoptosis 27(11–12):913–928. https://doi.org/10.1007/s10495-022-01756-7

Article  PubMed  CAS  Google Scholar 

Wang X, Shen Y, Wang S, Li S, Zhang W, Liu X et al (2017) PharmMapper 2017 update: a web server for potential drug target identification with a comprehensive target pharmacophore database. Nucleic Acids Res 45(W1):W356–w60. https://doi.org/10.1093/nar/gkx374

Article  PubMed  PubMed Central  CAS  Google Scholar 

Abou-Ghali M, Lallemand-Breitenbach V (2024) PML Nuclear bodies: the cancer connection and beyond. Nucleus 15(1):2321265. https://doi.org/10.1080/19491034.2024.2321265

Article  PubMed  PubMed Central  CAS 

Comments (0)

No login
gif