The Janus face of CaMKII: from memory consolidation to neurotoxic switch in Alzheimer’s disease

Abeysinghe A, Deshapriya R, Udawatte C (2020) Alzheimer’s disease; a review of the pathophysiological basis and therapeutic interventions. Life Sci 256:117996. https://doi.org/10.1016/j.lfs.2020.117996

Article  PubMed  CAS  Google Scholar 

Abiria SA, Colbran RJ (2010) CaMKII associates with CaV1.2 L-type calcium channels via selected beta subunits to enhance regulatory phosphorylation. J Neurochem 112(1):150–161. https://doi.org/10.1111/j.1471-4159.2009.06436.x

Article  PubMed  CAS  Google Scholar 

Alshial EE, Abdulghaney MI, Wadan AS et al (2023) Mitochondrial dysfunction and neurological disorders: a narrative review and treatment overview. Life Sci 334:122257. https://doi.org/10.1016/j.lfs.2023.122257

Article  PubMed  CAS  Google Scholar 

Ames JB (2021) L-type Ca(2+) channel regulation by calmodulin and CaBP1. Biomolecules. https://doi.org/10.3390/biom11121811

Article  PubMed  PubMed Central  Google Scholar 

Andersen JV, Markussen KH, Jakobsen E et al (2021) Glutamate metabolism and recycling at the excitatory synapse in health and neurodegeneration. Neuropharmacology 196:108719. https://doi.org/10.1016/j.neuropharm.2021.108719

Article  PubMed  CAS  Google Scholar 

Aravind P, Bulbule SR, Hemalatha N, Babu RL, Devaraju KS (2021) Elevation of gene expression of calcineurin, calmodulin and calsyntenin in oxidative stress induced PC12 cells. Genes Dis 8(1):87–93. https://doi.org/10.1016/j.gendis.2019.09.001

Article  PubMed  CAS  Google Scholar 

Arbel-Ornath M, Hudry E, Boivin JR et al (2017) Soluble oligomeric amyloid-β induces calcium dyshomeostasis that precedes synapse loss in the living mouse brain. Mol Neurodegener 12(1):27. https://doi.org/10.1186/s13024-017-0169-9

Article  PubMed  PubMed Central  CAS  Google Scholar 

Arboleda-Velasquez JF, Lopera F, O’Hare M et al (2019) Resistance to autosomal dominant Alzheimer’s disease in an APOE3 Christchurch homozygote: a case report. Nat Med 25(11):1680–1683. https://doi.org/10.1038/s41591-019-0611-3

Article  PubMed  PubMed Central  CAS  Google Scholar 

Arispe N, Rojas E, Pollard HB (1993) Alzheimer disease amyloid beta protein forms calcium channels in bilayer membranes: blockade by tromethamine and aluminum. Proc Natl Acad Sci USA 90(2):567–571. https://doi.org/10.1073/pnas.90.2.567

Article  PubMed  PubMed Central  CAS  Google Scholar 

Azargoonjahromi A (2024) The duality of amyloid-β: its role in normal and Alzheimer’s disease states. Mol Brain 17(1):44. https://doi.org/10.1186/s13041-024-01118-1

Article  PubMed  PubMed Central  CAS  Google Scholar 

Bai R, Guo J, Ye XY, Xie Y, Xie T (2022) Oxidative stress: the core pathogenesis and mechanism of Alzheimer’s disease. Ageing Res Rev 77:101619. https://doi.org/10.1016/j.arr.2022.101619

Article  PubMed  CAS  Google Scholar 

Baltaci SB, Mogulkoc R, Baltaci AK (2019) Molecular mechanisms of early and late LTP. Neurochem Res 44(2):281–296. https://doi.org/10.1007/s11064-018-2695-4

Article  PubMed  CAS  Google Scholar 

Baracaldo-Santamaría D, Avendaño-Lopez SS, Ariza-Salamanca DF et al (2023) Role of calcium modulation in the pathophysiology and treatment of Alzheimer’s disease. Int J Mol Sci. https://doi.org/10.3390/ijms24109067

Article  PubMed  PubMed Central  Google Scholar 

Barcomb K, Hell JW, Benke TA, Bayer KU (2016) The CaMKII/GluN2B protein interaction maintains synaptic strength. J Biol Chem 291(31):16082–16089. https://doi.org/10.1074/jbc.M116.734822

Article  PubMed  PubMed Central  CAS  Google Scholar 

Bartus RT, Dean RL 3rd, Beer B, Lippa AS (1982) The cholinergic hypothesis of geriatric memory dysfunction. Science 217(4558):408–414. https://doi.org/10.1126/science.7046051

Article  PubMed  CAS  Google Scholar 

Bayer KU, De Koninck P, Leonard AS, Hell JW, Schulman H (2001) Interaction with the NMDA receptor locks CaMKII in an active conformation. Nature 411(6839):801–805. https://doi.org/10.1038/35081080

Article  PubMed  CAS  Google Scholar 

Beauverger P, Ozoux ML, Bégis G et al (2020) Reversion of cardiac dysfunction by a novel orally available calcium/calmodulin-dependent protein kinase II inhibitor, RA306, in a genetic model of dilated cardiomyopathy. Cardiovasc Res 116(2):329–338. https://doi.org/10.1093/cvr/cvz097

Article  PubMed  CAS  Google Scholar 

Beckendorf J, van den Hoogenhof MMG, Backs J (2018) Physiological and unappreciated roles of CaMKII in the heart. Basic Res Cardiol 113(4):29. https://doi.org/10.1007/s00395-018-0688-8

Article  PubMed  PubMed Central  CAS  Google Scholar 

Beghi S, Cavaliere F, Buschini A (2020) Gene polymorphisms in calcium-calmodulin pathway: focus on cardiovascular disease. Mutat Res Rev Mutat Res 786:108325. https://doi.org/10.1016/j.mrrev.2020.108325

Article  PubMed  CAS  Google Scholar 

Beghi S, Furmanik M, Jaminon A et al (2022) Calcium signalling in heart and vessels: role of calmodulin and downstream calmodulin-dependent protein kinases. Int J Mol Sci. https://doi.org/10.3390/ijms232416139

Article  PubMed  PubMed Central  Google Scholar 

Bekdash RA (2021) The cholinergic system, the adrenergic system and the neuropathology of Alzheimer’s disease. Int J Mol Sci. https://doi.org/10.3390/ijms22031273

Article  PubMed  PubMed Central  Google Scholar 

Békés M, Langley DR, Crews CM (2022) Protac targeted protein degraders: the past is prologue. Nat Rev Drug Discov 21(3):181–200. https://doi.org/10.1038/s41573-021-00371-6

Article  PubMed  PubMed Central  CAS  Google Scholar 

Belder CRS, Schott JM, Fox NC (2023) Preparing for disease-modifying therapies in Alzheimer’s disease. Lancet Neurol 22(9):782–783. https://doi.org/10.1016/s1474-4422(23)00274-0

Article  PubMed  Google Scholar 

Berry AS, Harrison TM (2023) New perspectives on the basal forebrain cholinergic system in Alzheimer’s disease. Neurosci Biobehav Rev 150:105192. https://doi.org/10.1016/j.neubiorev.2023.105192

Article  PubMed  PubMed Central  CAS  Google Scholar 

Bhattacharyya M, Karandur D, Kuriyan J (2020a) Structural insights into the regulation of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII). Cold Spring Harb Perspect Biol. https://doi.org/10.1101/cshperspect.a035147

Article  PubMed  PubMed Central  Google Scholar 

Bhattacharyya M, Lee YK, Muratcioglu S et al (2020b) Flexible linkers in CaMKII control the balance between activating and inhibitory autophosphorylation. Elife. https://doi.org/10.7554/eLife.53670

Article  PubMed  PubMed Central  Google Scholar 

Blumenfeld J, Yip O, Kim MJ, Huang Y (2024) Cell type-specific roles of APOE4 in Alzheimer disease. Nat Rev Neurosci 25(2):91–110. https://doi.org/10.1038/s41583-023-00776-9

Article  PubMed  PubMed Central  CAS  Google Scholar 

Bohush A, Leśniak W, Weis S, Filipek A (2021) Calmodulin and its binding proteins in Parkinson’s disease. Int J Mol Sci. https://doi.org/10.3390/ijms22063016

Comments (0)

No login
gif