Effects of an environmentally relevant mixture of organophosphate esters on the phenotype and function of HepG2 liver cells

Aimuzi R, Xie Z, Qu Y, Jiang Y, Luo K (2023) Associations of urinary organophosphate esters metabolites and diet quality with nonalcoholic/metabolic dysfunction-associated fatty liver diseases in adults. Ecotoxicol Environ Saf 254:114720. https://doi.org/10.1016/j.ecoenv.2023.114720

Article  PubMed  CAS  Google Scholar 

Al-Salem AM, Saquib Q, Siddiqui MA, Ahmad J, Wahab R, Al-Khedhairy AA (2019) Organophosphorus flame retardant (tricresyl phosphate) trigger apoptosis in HepG2 cells: Transcriptomic evidence on activation of human cancer pathways. Chemosphere 237:124519. https://doi.org/10.1016/j.chemosphere.2019.124519

Article  PubMed  CAS  Google Scholar 

Aluru N, I GH, McMonagle H, Harju M. (2021) Hepatic gene expression profiling of atlantic Cod (Gadus morhua) liver after exposure to organophosphate flame retardants revealed altered cholesterol biosynthesis and lipid metabolism. Environ Toxicol Chem 40(6):1639–1648. https://doi.org/10.1002/etc.5014

Article  PubMed  CAS  Google Scholar 

Baldwin KR, Phillips AL, Horman B et al (2017) Sex specific placental accumulation and behavioral effects of developmental Firemaster 550 exposure in Wistar rats. Sci Rep 7(1):7118. https://doi.org/10.1038/s41598-017-07216-6

Article  PubMed  PubMed Central  CAS  Google Scholar 

Bearr JS, Stapleton HM, Mitchelmore CL (2010) Accumulation and DNA damage in fathead minnows (Pimephales promelas) exposed to 2 brominated flame-retardant mixtures, Firemaster 550 and Firemaster BZ-54. Environ Toxicol Chem 29(3):722–729. https://doi.org/10.1002/etc.94

Article  PubMed  PubMed Central  CAS  Google Scholar 

Birgisdottir Å, Johansen T (2020) Autophagy and endocytosis - interconnections and interdependencies. J Cell Sci. https://doi.org/10.1242/jcs.228114

Article  PubMed  Google Scholar 

Chai H, Hu W, Dai Y, Zhu X, Qian Pa, Zhu J (2022) Environmental exposure to organophosphate esters and suspected non-alcoholic fatty liver disease among US adults: a mixture analysis. Front Public Health. https://doi.org/10.3389/fpubh.2022.995649

Article  PubMed  PubMed Central  Google Scholar 

Chazotte B (2011) Labeling lysosomes in live cells with LysoTracker. Cold Spring Harb Protoc 2011(2):pdb.prot5571. https://doi.org/10.1101/pdb.prot5571

Article  PubMed  Google Scholar 

Cristale J, Lacorte S (2013) Development and validation of a multiresidue method for the analysis of polybrominated diphenyl ethers, new brominated and organophosphorus flame retardants in sediment, sludge and dust. J Chromatogr A 1305:267–275. https://doi.org/10.1016/j.chroma.2013.07.028

Article  PubMed  CAS  Google Scholar 

Czaja MJ, Ding WX, Donohue TM Jr et al (2013) Functions of autophagy in normal and diseased liver. Autophagy 9(8):1131–1158. https://doi.org/10.4161/auto.25063

Article  PubMed  PubMed Central  CAS  Google Scholar 

Donohue TM, Osna NA, Kharbanda KK, Thomes PG (2019) Lysosome and proteasome dysfunction in alcohol-induced liver injury. Liver Res 3(3):191–205. https://doi.org/10.1016/j.livres.2019.11.001

Article  Google Scholar 

Fan X, Kubwabo C, Rasmussen PE, Wu F (2014) Simultaneous determination of thirteen organophosphate esters in settled indoor house dust and a comparison between two sampling techniques. Sci Total Environ 491–492:80–86. https://doi.org/10.1016/j.scitotenv.2013.12.127

Article  PubMed  CAS  Google Scholar 

Fang W, Deng Z, Benadjaoud F, Yang C, Shi G-P (2020) Cathepsin b deficiency ameliorates liver lipid deposition, inflammatory cell infiltration, and fibrosis after diet-induced nonalcoholic steatohepatitis. Transl Res 222:28–40. https://doi.org/10.1016/j.trsl.2020.04.011

Article  PubMed  PubMed Central  CAS  Google Scholar 

Foulds CE, Treviño LS, York B, Walker CL (2017) Endocrine-disrupting chemicals and fatty liver disease. Nat Rev Endocrinol 13(8):445–457. https://doi.org/10.1038/nrendo.2017.42

Article  PubMed  PubMed Central  CAS  Google Scholar 

Fukuo Y, Yamashina S, Sonoue H et al (2014) Abnormality of autophagic function and cathepsin expression in the liver from patients with non-alcoholic fatty liver disease. Hepatol Res 44(9):1026–1036. https://doi.org/10.1111/hepr.12282

Article  PubMed  CAS  Google Scholar 

Gao Y, Wang L, Zhang X et al (2022) Similarities and differences among the responses to three chlorinated organophosphate esters in earthworm: evidences from biomarkers, transcriptomics and metabolomics. Sci Total Environ 815:152853. https://doi.org/10.1016/j.scitotenv.2021.152853

Article  PubMed  CAS  Google Scholar 

Glazer L, Hawkey AB, Wells CN et al (2018) Developmental exposure to low concentrations of organophosphate flame retardants causes life-long behavioral alterations in zebrafish. Toxicol Sci 165(2):487–498. https://doi.org/10.1093/toxsci/kfy173

Article  PubMed  PubMed Central  CAS  Google Scholar 

Gluchowski NL, Becuwe M, Walther TC, Farese RV (2017) Lipid droplets and liver disease: from basic biology to clinical implications. Nat Rev Gastroenterol Hepatol 14(6):343–355. https://doi.org/10.1038/nrgastro.2017.32

Article  PubMed  PubMed Central  CAS  Google Scholar 

Hartmann PC, Bürgi D, Giger W (2004) Organophosphate flame retardants and plasticizers in indoor air. Chemosphere 57(8):781–787. https://doi.org/10.1016/j.chemosphere.2004.08.051

Article  PubMed  CAS  Google Scholar 

Kubwabo C, Fan X, Katuri GP, Habibagahi A, Rasmussen PE (2021) Occurrence of aryl and alkyl-aryl phosphates in Canadian house dust. Emerging Contaminants 7:149–159. https://doi.org/10.1016/j.emcon.2021.07.002

Article  CAS  Google Scholar 

Li Z, Robaire B, Hales BF (2023) The organophosphate esters used as flame retardants and plasticizers affect H295R adrenal cell phenotypes and functions. Endocrinology. https://doi.org/10.1210/endocr/bqad119

Article  PubMed  PubMed Central  Google Scholar 

Liu L-Y, Salamova A, He K, Hites RA (2015) Analysis of polybrominated diphenyl ethers and emerging halogenated and organophosphate flame retardants in human hair and nails. J Chromatogr A 1406:251–257. https://doi.org/10.1016/j.chroma.2015.06.003

Article  PubMed  CAS  Google Scholar 

Liu B, Ding L, Lv L, Yu Y, Dong W (2023) Organophosphate esters (OPEs) and novel brominated flame retardants (NBFRs) in indoor dust: a systematic review on concentration, spatial distribution, sources, and human exposure. Chemosphere 345:140560. https://doi.org/10.1016/j.chemosphere.2023.140560

Article  PubMed  CAS  Google Scholar 

Ma J, Zhu H, Kannan K (2019) Organophosphorus flame retardants and plasticizers in breast milk from the United States. Environ Sci Technol Lett 6(9):525–531. https://doi.org/10.1021/acs.estlett.9b00394

Article  PubMed  PubMed Central  CAS  Google Scholar 

Macari S, Rock KD, Santos MS et al (2020) Developmental exposure to the flame retardant mixture Firemaster 550 compromises adult bone integrity in male but not female rats. Int J Mol Sci. https://doi.org/10.3390/ijms21072553

Article  PubMed  PubMed Central  Google Scholar 

Marwaha R, Sharma M (2017) DQ-red BSA trafficking assay in cultured cells to assess cargo delivery to lysosomes. Bio-Protoc 7(19):e2571. https://doi.org/10.21769/BioProtoc.2571

Article  PubMed  PubMed Central  Google Scholar 

Mihajlović I, Miloradov MV, Fries E (2011) Application of Twisselmann extraction, SPME, and GC-MS to assess input sources for organophosphate esters into soil. Environ Sci Technol 45(6):2264–2269. https://doi.org/10.1021/es103870f

Article  PubMed  CAS  Google Scholar 

Napolitano G, Ballabio A (2016) TFEB at a glance. J Cell Sci 129(13):2475–2481.

Comments (0)

No login
gif