Brooke E Sylvester and E. Vakiani, ‘Tumor evolution and intratumor heterogeneity in colorectal carcinoma: insights from comparative genomic profiling of primary tumors and matched metastases’, Journal of Gastrointestinal Oncology, vol. 6, no. 6, 2015, https://doi.org/10.3978/j.issn.2078-6891.2015.083.
K. Naxerova et al., ‘Hypermutable DNA chronicles the evolution of human colon cancer’, Proc. Natl. Acad. Sci. U.S.A., vol. 111, no. 18, May 2014, https://doi.org/10.1073/pnas.1400179111.
T. Morikawa et al., ‘Prognostic Significance and Molecular Associations of Tumor Growth Pattern in Colorectal Cancer’, Ann Surg Oncol, vol. 19, no. 6, pp. 1944–1953, Jun. 2012, https://doi.org/10.1245/s10434-011-2174-5.
M. Greaves, ‘Evolutionary Determinants of Cancer’, Cancer Discovery, vol. 5, no. 8, pp. 806–820, Aug. 2015, https://doi.org/10.1158/2159-8290.CD-15-0439.
S. Ogino et al., ‘Lymphocytic Reaction to Colorectal Cancer Is Associated with Longer Survival, Independent of Lymph Node Count, Microsatellite Instability, and CpG Island Methylator Phenotype’, Clinical Cancer Research, vol. 15, no. 20, pp. 6412–6420, Oct. 2009, https://doi.org/10.1158/1078-0432.CCR-09-1438.
B. Mlecnik et al., ‘Histopathologic-Based Prognostic Factors of Colorectal Cancers Are Associated With the State of the Local Immune Reaction’, JCO, vol. 29, no. 6, pp. 610–618, Feb. 2011, https://doi.org/10.1200/JCO.2010.30.5425.
X. Li et al., ‘Prognostic and predictive value of the macroscopic growth pattern in patients undergoing curative resection of colorectal cancer: a single-institution retrospective cohort study of 4,080 Chinese patients’, CMAR, vol. Volume 10, pp. 1875–1887, Jul. 2018, https://doi.org/10.2147/CMAR.S165279.
M. J. M. Van Der Valk et al., ‘Long-term outcomes of clinical complete responders after neoadjuvant treatment for rectal cancer in the International Watch & Wait Database (IWWD): an international multicentre registry study’, The Lancet, vol. 391, no. 10139, pp. 2537–2545, Jun. 2018, https://doi.org/10.1016/S0140-6736(18)31078-X.
V. S. Jayaprakasam, J. Alvarez, D. M. Omer, M. J. Gollub, J. J. Smith, and I. Petkovska, ‘Watch-and-Wait Approach to Rectal Cancer: The Role of Imaging’, Radiology, vol. 307, no. 1, p. e221529, Apr. 2023, https://doi.org/10.1148/radiol.221529.
T. J. George, C. J. Allegra, and G. Yothers, ‘Neoadjuvant Rectal (NAR) Score: a New Surrogate Endpoint in Rectal Cancer Clinical Trials’, Curr Colorectal Cancer Rep, vol. 11, no. 5, pp. 275–280, Oct. 2015, https://doi.org/10.1007/s11888-015-0285-2.
I. Imam, K. Hammarström, and B. Glimelius, ‘Determinants of Pre-Surgical Treatment in Primary Rectal Cancer: A Population-Based Study’, Cancers, vol. 15, no. 4, p. 1154, Feb. 2023, https://doi.org/10.3390/cancers15041154.
B. Glimelius, ‘Recent advances in rectal cancer treatment – are we on the right track?’, ujms, vol. 129, p. e10537, Feb. 2024, https://doi.org/10.48101/ujms.v129.10537.
R. G. H. Beets-Tan et al., ‘Magnetic resonance imaging for clinical management of rectal cancer: Updated recommendations from the 2016 European Society of Gastrointestinal and Abdominal Radiology (ESGAR) consensus meeting’, Eur Radiol, vol. 28, no. 4, pp. 1465–1475, Apr. 2018, https://doi.org/10.1007/s00330-017-5026-2.
G. Brown et al., ‘Morphologic Predictors of Lymph Node Status in Rectal Cancer with Use of High-Spatial-Resolution MR Imaging with Histopathologic Comparison’, Radiology, vol. 227, no. 2, pp. 371–377, May 2003, https://doi.org/10.1148/radiol.2272011747.
J. E. Van Timmeren, D. Cester, S. Tanadini-Lang, H. Alkadhi, and B. Baessler, ‘Radiomics in medical imaging—“how-to” guide and critical reflection’, Insights Imaging, vol. 11, no. 1, p. 91, Dec. 2020, https://doi.org/10.1186/s13244-020-00887-2.
Article PubMed PubMed Central Google Scholar
J. Shin et al., ‘MRI Radiomics Model Predicts Pathologic Complete Response of Rectal Cancer Following Chemoradiotherapy’, Radiology, vol. 303, no. 2, pp. 351–358, May 2022, https://doi.org/10.1148/radiol.211986.
H. Shaish et al., ‘Radiomics of MRI for pretreatment prediction of pathologic complete response, tumor regression grade, and neoadjuvant rectal score in patients with locally advanced rectal cancer undergoing neoadjuvant chemoradiation: an international multicenter study’, Eur Radiol, vol. 30, no. 11, pp. 6263–6273, Nov. 2020, https://doi.org/10.1007/s00330-020-06968-6.
Y. Cui et al., ‘Radiomics analysis of multiparametric MRI for prediction of pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer’, Eur Radiol, vol. 29, no. 3, pp. 1211–1220, Mar. 2019, https://doi.org/10.1007/s00330-018-5683-9.
Z. Liu et al., ‘Radiomics Analysis for Evaluation of Pathological Complete Response to Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal Cancer’, Clinical Cancer Research, vol. 23, no. 23, pp. 7253–7262, Nov. 2017, https://doi.org/10.1158/1078-0432.CCR-17-1038.
W. C. Chong et al., ‘A comprehensive evaluation of MR-radiomics role in NAR score prediction in locally advanced rectal cancer’, The Royal College of Radiologists Open, vol. 1, p. 100004, 2023, https://doi.org/10.1016/j.rcro.2023.100004.
Z. Shu, D. Mao, Q. Song, Y. Xu, P. Pang, and Y. Zhang, ‘Multiparameter MRI-based radiomics for preoperative prediction of extramural venous invasion in rectal cancer’, Eur Radiol, vol. 32, no. 2, pp. 1002–1013, Feb. 2022, https://doi.org/10.1007/s00330-021-08242-9.
H. Yuan, Y. Peng, X. Xu, S. Tu, Y. Wei, and Y. Ma, ‘A Tumoral and Peritumoral CT-Based Radiomics and Machine Learning Approach to Predict the Microsatellite Instability of Rectal Carcinoma’, CMAR, vol. Volume 14, pp. 2409–2418, Aug. 2022, https://doi.org/10.2147/CMAR.S377138.
N. Braman et al., ‘Association of Peritumoral Radiomics With Tumor Biology and Pathologic Response to Preoperative Targeted Therapy for HER2 (ERBB2)–Positive Breast Cancer’, JAMA Netw Open, vol. 2, no. 4, p. e192561, Apr. 2019, https://doi.org/10.1001/jamanetworkopen.2019.2561.
N. Horvat et al., ‘MR Imaging of Rectal Cancer: Radiomics Analysis to Assess Treatment Response after Neoadjuvant Therapy’, Radiology, vol. 287, no. 3, pp. 833–843, Jun. 2018, https://doi.org/10.1148/radiol.2018172300.
K. Hammarström, I. Imam, N. Korsavidou Hult, J. Ekström, T. Sjöblom, and B. Glimelius, ‘Determining the use of preoperative (chemo)radiotherapy in primary rectal cancer according to national and international guidelines’, Radiotherapy and Oncology, vol. 136, pp. 106–112, Jul. 2019, https://doi.org/10.1016/j.radonc.2019.03.036.
R. R. Bahadoer et al., ‘Short-course radiotherapy followed by chemotherapy before total mesorectal excision (TME) versus preoperative chemoradiotherapy, TME, and optional adjuvant chemotherapy in locally advanced rectal cancer (RAPIDO): a randomised, open-label, phase 3 trial’, The Lancet Oncology, vol. 22, no. 1, pp. 29–42, Jan. 2021, https://doi.org/10.1016/S1470-2045(20)30555-6.
B. Glimelius et al., ‘Total neoadjuvant treatment using short-course radiotherapy and four CAPOX cycles in locally advanced rectal cancer with high-risk criteria for recurrence: a Swedish nationwide cohort study (LARCT-US)’, eClinicalMedicine, vol. 75, Sep. 2024, https://doi.org/10.1016/j.eclinm.2024.102771.
‘nationellt-vardprogram-tjock-andtarmscancer.pdf’. Accessed: Sep. 05, 2024. [Online]. Available: https://kunskapsbanken.cancercentrum.se/globalassets/cancerdiagnoser/tjock--och-andtarm-anal/vardprogram/nationellt-vardprogram-tjock-andtarmscancer.pdf
A. K. Anagnostopoulos et al., ‘Radiomics/Radiogenomics in Lung Cancer: Basic Principles and Initial Clinical Results’, Cancers, vol. 14, no. 7, p. 1657, Mar. 2022, https://doi.org/10.3390/cancers14071657.
Y. Zhu et al., ‘Different radiomics annotation methods comparison in rectal cancer characterisation and prognosis prediction: a two-centre study’, Insights into Imaging, vol. 15, no. 1, p. 211, Aug. 2024, https://doi.org/10.1186/s13244-024-01795-5.
A. Delli Pizzi et al., ‘MRI-based clinical-radiomics model predicts tumor response before treatment in locally advanced rectal cancer’, Sci Rep, vol. 11, no. 1, p. 5379, Mar. 2021, https://doi.org/10.1038/s41598-021-84816-3.
Article CAS PubMed PubMed Central Google Scholar
V. S. Jayaprakasam et al., ‘MRI radiomics features of mesorectal fat can predict response to neoadjuvant chemoradiation therapy and tumor recurrence in patients with locally advanced rectal cancer’, Eur Radiol, vol. 32, no. 2, pp. 971–980, Feb. 2022, https://doi.org/10.1007/s00330-021-08144-w.
P. D. Mc Entee et al., ‘Extramural venous invasion (EMVI) in colorectal cancer is associated with increased cancer recurrence and cancer-related death’, European Journal of Surgical Oncology, vol. 48, no. 7, pp. 1638–1642, Jul. 2022, https://doi.org/10.1016/j.ejso.2022.02.013.
U. Karjol, P. Jonnada, A. Chandranath, and S. Cherukuru, ‘Lymph Node Ratio as a Prognostic Marker in Rectal Cancer Survival: A Systematic Review and Meta-Analysis’, Cureus, May 2020, https://doi.org/10.7759/cureus.8047.
N. Papanikolaou, C. Matos, and D. M. Koh, ‘How to develop a meaningful radiomic signature for clinical use in oncologic patients’, Cancer Imaging, vol. 20, no. 1, p. 33, Dec. 2020, https://doi.org/10.1186/s40644-020-00311-4.
Article PubMed PubMed Central Google Scholar
B. Kocak et al., ‘METhodological RadiomICs Score (METRICS): a quality scoring tool for radiomics research endorsed by EuSoMII’, Insights Imaging, vol. 15, no. 1, p. 8, Jan. 2024, https://doi.org/10.1186/s13244-023-01572-w.
F. Maleki, K. Ovens, R. Gupta, C. Reinhold, A. Spatz, and R. Forghani, ‘Generalizability of Machine Learning Models: Quantitative Evaluation of Three Methodological Pitfalls’, Radiology: Artificial Intelligence, vol. 5, no. 1, p. e220028, Jan. 2023, https://doi.org/10.1148/ryai.220028.
Comments (0)