Tan W, Zhao X, Ma X, Wang W, Niu P, Xu W, et al. A novel coronavirus genome identified in a cluster of pneumonia cases Wuhan China 2019–2020. China CDC Weekly. 2020;2:61–2. https://doi.org/10.46234/ccdcw2020.017.
Article PubMed PubMed Central Google Scholar
Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan. China The Lancet. 2020;395:497–506.
Merad M, Blish CA, Sallusto F, Iwasaki A. The immunology and immunopathology of COVID-19. Science. 2022;375:1122–7.
Article CAS PubMed Google Scholar
Barnes BJ, Adrover JM, Baxter-Stoltzfus A, Borczuk A, Cools-Lartigue J, Crawford JM, et al. Targeting potential drivers of COVID-19: Neutrophil extracellular traps. J Exp Med. 2020. https://doi.org/10.1084/jem.20200652.
Article PubMed PubMed Central Google Scholar
Radermecker C, Detrembleur N, Guiot J, Cavalier E, Henket M, d’Emal C, et al. Neutrophil extracellular traps infiltrate the lung airway, interstitial, and vascular compartments in severe COVID-19. J Exp Med. 2020. https://doi.org/10.1084/jem.20201012.
Article PubMed PubMed Central Google Scholar
Melms JC, Biermann J, Huang H, Wang Y, Nair A, Tagore S, et al. A molecular single-cell lung atlas of lethal COVID-19. Nature. 2021;595:114–9.
Article CAS PubMed PubMed Central Google Scholar
Schulte-Schrepping J, Reusch N, Paclik D, Baßler K, Schlickeiser S, Zhang B, et al. Severe COVID-19 is marked by a dysregulated myeloid cell compartment. Cell. 2020;182:1419-1440.e23.
Article CAS PubMed PubMed Central Google Scholar
Reusch N, De Domenico E, Bonaguro L, Schulte-Schrepping J, Baßler K, Schultze JL, et al. Neutrophils in COVID-19. Front Immunol. 2021;12: 652470.
Article CAS PubMed PubMed Central Google Scholar
Shi J, Wen Z, Zhong G, Yang H, Wang C, Huang B, et al. Susceptibility of ferrets, cats, dogs, and other domesticated animals to SARS–coronavirus 2. Science. 1979;2020(368):1016–20.
Sia SF, Yan L-M, Chin AWH, Fung K, Choy K-T, Wong AYL, et al. Pathogenesis and transmission of SARS-CoV-2 in golden hamsters. Nature. 2020;583:834–8.
Article CAS PubMed PubMed Central Google Scholar
Rockx B, Kuiken T, Herfst S, Bestebroer T, Lamers MM, Oude BB, Munnink D, et al. Comparative pathogenesis of COVID-19, MERS, and SARS in a nonhuman primate model. Science. 2020;368(6494):1012–5. https://doi.org/10.1126/science.abb7314.
Article CAS PubMed PubMed Central Google Scholar
Dinnon KH, Leist SR, Schäfer A, Edwards CE, Martinez DR, Montgomery SA, et al. A mouse-adapted model of SARS-CoV-2 to test COVID-19 countermeasures. Nature. 2020;586:560–6.
Article PubMed PubMed Central Google Scholar
Gu H, Chen Q, Yang G, He L, Fan H, Deng YQ, et al. Adaptation of SARS-CoV-2 in BALB/c mice for testing vaccine efficacy. Science. 2020;369
dos Andrade ACSP, Campolina-Silva GH, Queiroz-Junior CM, de Oliveira LC, de Lacerda LSB, Gaggino JCP, et al. A biosafety level 2 mouse model for studying betacoronavirus-induced acute lung damage and systemic manifestations. J Virol. 2021;95:1276–97. https://doi.org/10.1128/JVI.01276-21.
das Pereira RD, Rabelo RAN, de Oliveira NFM, Porto SLT, dos Andrade ACSP, Queiroz-Junior CM, et al. A 5-lipoxygenase inhibitor, zileuton, modulates host immune responses and improves lung function in a model of severe acute respiratory syndrome (SARS) induced by betacoronavirus. Viruses. 2023;15:2049.
Article CAS PubMed PubMed Central Google Scholar
Campolina-Silva G, dos Andrade ACSP, Couto M, Bittencourt-Silva PG, Queiroz-Junior CM, de Lacerda LSB, et al. Dietary vitamin D mitigates coronavirus-induced lung inflammation and damage in mice. Viruses. 2023;15:2434.
Article CAS PubMed PubMed Central Google Scholar
Winkler ES, Bailey AL, Kafai NM, Nair S, McCune BT, Yu J, et al. SARS-CoV-2 infection of human ACE2-transgenic mice causes severe lung inflammation and impaired function. Nat Immunol. 2020;21:1327–35.
Article CAS PubMed PubMed Central Google Scholar
Beigel JH, Tomashek KM, Dodd LE, Mehta AK, Zingman BS, Kalil AC, et al. Remdesivir for the Treatment of Covid-19 — final report. N Engl J Med. 2020;383:1813–26. https://doi.org/10.1056/NEJMoa2007764.
Article CAS PubMed Google Scholar
Hammond J, Leister-Tebbe H, Gardner A, Abreu P, Bao W, Wisemandle W, et al. Oral nirmatrelvir for high-risk, nonhospitalized adults with Covid-19. N Engl J Med. 2022;386:1397–408. https://doi.org/10.1056/NEJMoa2118542.
Article CAS PubMed Google Scholar
P H, WS L, JR E, M M, JL B, L L, et al. Dexamethasone in Hospitalized Patients with Covid-19. N Engl J Med. 2021 384:693–704.
Investigators R-C. Interleukin-6 Receptor Antagonists in Critically Ill Patients with Covid-19. N Engl J Med. 2021;384:1491–502. https://doi.org/10.1056/nejmoa2100433.
Collaborative Group RECOVERY. Tocilizumab in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial. Lancet. 2021;397:1637.
Kalil AC, Patterson TF, Mehta AK, Tomashek KM, Wolfe CR, Ghazaryan V, et al. Baricitinib plus Remdesivir for Hospitalized Adults with Covid-19. N Engl J Med. 2021;384:795–807.
Article CAS PubMed Google Scholar
Lamontagne F, Agoritsas T, MacDonald H, Leo YS, Diaz J, Agarwal A, et al. A living WHO guideline on drugs for covid-19. The BMJ. 2022;370:3379.
Abdoli A, Falahi S, Kenarkoohi A. COVID-19-associated opportunistic infections: a snapshot on the current reports. Clin Exp Med. 2022;22:327.
Article CAS PubMed Google Scholar
Brooks D, Schulman-Rosenbaum R, Griff M, Lester J, Low Wang CC. Glucocorticoid-induced hyperglycemia including dexamethasone-associated hyperglycemia in COVID-19 infection: a systematic review. Endocr Pract. 2022;28:1166–77.
Article PubMed PubMed Central Google Scholar
Tavares LP, Negreiros-Lima GL, Lima KM, Silva EPMR, Pinho V, Teixeira MM, et al. Blame the signaling: Role of cAMP for the resolution of inflammation. Pharmacol Res. 2020;159:105030. https://doi.org/10.1016/j.phrs.2020.105030.
Article CAS PubMed Google Scholar
Aronoff DM, Carstens JK, Chen GH, Toews GB, Peters-Golden M. Short communication: differences between macrophages and dendritic cells in the cyclic AMP-dependent regulation of lipopolysaccharide-induced cytokine and chemokine synthesis. J Interferon Cytokine Res. 2006;26:827–33.
Article CAS PubMed Google Scholar
Konrad FM, Bury A, Schick MA, Ngamsri KC, Reutershan J. The unrecognized effects of phosphodiesterase 4 on epithelial cells in pulmonary inflammation. PLoS ONE. 2015;10: e0121725. https://doi.org/10.1371/journal.pone.0121725.
Article CAS PubMed PubMed Central Google Scholar
Sousa LP, Carmo AF, Rezende BM, Lopes F, Silva DM, Alessandri AL, et al. Cyclic AMP enhances resolution of allergic pleurisy by promoting inflammatory cell apoptosis via inhibition of PI3K/Akt and NF-κB. Biochem Pharmacol. 2009;78:396–405.
Article CAS PubMed Google Scholar
Sheldon KE, Shandilya H, Kepka-Lenhart D, Poljakovic M, Ghosh A, Morris SM. Shaping the murine macrophage phenotype: IL-4 and cyclic AMP synergistically activate the arginase I promoter. J Immunol. 2013;191(5):2290–8. https://doi.org/10.4049/jimmunol.1202102.
Article CAS PubMed Google Scholar
Conti M, Beavo J. Biochemistry and physiology of cyclic nucleotide phosphodiesterases: Essential components in cyclic nucleotide signaling. Annu Rev Biochem. Annu Rev Biochem; 2007. p. 481–511.
Li H, Zuo J, Tang W. Phosphodiesterase-4 inhibitors for the treatment of inflammatory diseases. Front Pharmacol. 2018;9:1048.
Comments (0)