Selective phosphodiesterase 4 inhibitor roflumilast reduces inflammation and lung injury in models of betacoronavirus infection in mice

Tan W, Zhao X, Ma X, Wang W, Niu P, Xu W, et al. A novel coronavirus genome identified in a cluster of pneumonia cases Wuhan China 2019–2020. China CDC Weekly. 2020;2:61–2. https://doi.org/10.46234/ccdcw2020.017.

Article  PubMed  PubMed Central  Google Scholar 

Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan. China The Lancet. 2020;395:497–506.

Article  CAS  Google Scholar 

Merad M, Blish CA, Sallusto F, Iwasaki A. The immunology and immunopathology of COVID-19. Science. 2022;375:1122–7.

Article  CAS  PubMed  Google Scholar 

Barnes BJ, Adrover JM, Baxter-Stoltzfus A, Borczuk A, Cools-Lartigue J, Crawford JM, et al. Targeting potential drivers of COVID-19: Neutrophil extracellular traps. J Exp Med. 2020. https://doi.org/10.1084/jem.20200652.

Article  PubMed  PubMed Central  Google Scholar 

Radermecker C, Detrembleur N, Guiot J, Cavalier E, Henket M, d’Emal C, et al. Neutrophil extracellular traps infiltrate the lung airway, interstitial, and vascular compartments in severe COVID-19. J Exp Med. 2020. https://doi.org/10.1084/jem.20201012.

Article  PubMed  PubMed Central  Google Scholar 

Melms JC, Biermann J, Huang H, Wang Y, Nair A, Tagore S, et al. A molecular single-cell lung atlas of lethal COVID-19. Nature. 2021;595:114–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schulte-Schrepping J, Reusch N, Paclik D, Baßler K, Schlickeiser S, Zhang B, et al. Severe COVID-19 is marked by a dysregulated myeloid cell compartment. Cell. 2020;182:1419-1440.e23.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Reusch N, De Domenico E, Bonaguro L, Schulte-Schrepping J, Baßler K, Schultze JL, et al. Neutrophils in COVID-19. Front Immunol. 2021;12: 652470.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shi J, Wen Z, Zhong G, Yang H, Wang C, Huang B, et al. Susceptibility of ferrets, cats, dogs, and other domesticated animals to SARS–coronavirus 2. Science. 1979;2020(368):1016–20.

Google Scholar 

Sia SF, Yan L-M, Chin AWH, Fung K, Choy K-T, Wong AYL, et al. Pathogenesis and transmission of SARS-CoV-2 in golden hamsters. Nature. 2020;583:834–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rockx B, Kuiken T, Herfst S, Bestebroer T, Lamers MM, Oude BB, Munnink D, et al. Comparative pathogenesis of COVID-19, MERS, and SARS in a nonhuman primate model. Science. 2020;368(6494):1012–5. https://doi.org/10.1126/science.abb7314.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dinnon KH, Leist SR, Schäfer A, Edwards CE, Martinez DR, Montgomery SA, et al. A mouse-adapted model of SARS-CoV-2 to test COVID-19 countermeasures. Nature. 2020;586:560–6.

Article  PubMed  PubMed Central  Google Scholar 

Gu H, Chen Q, Yang G, He L, Fan H, Deng YQ, et al. Adaptation of SARS-CoV-2 in BALB/c mice for testing vaccine efficacy. Science. 2020;369

dos Andrade ACSP, Campolina-Silva GH, Queiroz-Junior CM, de Oliveira LC, de Lacerda LSB, Gaggino JCP, et al. A biosafety level 2 mouse model for studying betacoronavirus-induced acute lung damage and systemic manifestations. J Virol. 2021;95:1276–97. https://doi.org/10.1128/JVI.01276-21.

Article  Google Scholar 

das Pereira RD, Rabelo RAN, de Oliveira NFM, Porto SLT, dos Andrade ACSP, Queiroz-Junior CM, et al. A 5-lipoxygenase inhibitor, zileuton, modulates host immune responses and improves lung function in a model of severe acute respiratory syndrome (SARS) induced by betacoronavirus. Viruses. 2023;15:2049.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Campolina-Silva G, dos Andrade ACSP, Couto M, Bittencourt-Silva PG, Queiroz-Junior CM, de Lacerda LSB, et al. Dietary vitamin D mitigates coronavirus-induced lung inflammation and damage in mice. Viruses. 2023;15:2434.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Winkler ES, Bailey AL, Kafai NM, Nair S, McCune BT, Yu J, et al. SARS-CoV-2 infection of human ACE2-transgenic mice causes severe lung inflammation and impaired function. Nat Immunol. 2020;21:1327–35.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Beigel JH, Tomashek KM, Dodd LE, Mehta AK, Zingman BS, Kalil AC, et al. Remdesivir for the Treatment of Covid-19 — final report. N Engl J Med. 2020;383:1813–26. https://doi.org/10.1056/NEJMoa2007764.

Article  CAS  PubMed  Google Scholar 

Hammond J, Leister-Tebbe H, Gardner A, Abreu P, Bao W, Wisemandle W, et al. Oral nirmatrelvir for high-risk, nonhospitalized adults with Covid-19. N Engl J Med. 2022;386:1397–408. https://doi.org/10.1056/NEJMoa2118542.

Article  CAS  PubMed  Google Scholar 

P H, WS L, JR E, M M, JL B, L L, et al. Dexamethasone in Hospitalized Patients with Covid-19. N Engl J Med. 2021 384:693–704.

Investigators R-C. Interleukin-6 Receptor Antagonists in Critically Ill Patients with Covid-19. N Engl J Med. 2021;384:1491–502. https://doi.org/10.1056/nejmoa2100433.

Article  CAS  Google Scholar 

Collaborative Group RECOVERY. Tocilizumab in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial. Lancet. 2021;397:1637.

Article  Google Scholar 

Kalil AC, Patterson TF, Mehta AK, Tomashek KM, Wolfe CR, Ghazaryan V, et al. Baricitinib plus Remdesivir for Hospitalized Adults with Covid-19. N Engl J Med. 2021;384:795–807.

Article  CAS  PubMed  Google Scholar 

Lamontagne F, Agoritsas T, MacDonald H, Leo YS, Diaz J, Agarwal A, et al. A living WHO guideline on drugs for covid-19. The BMJ. 2022;370:3379.

Google Scholar 

Abdoli A, Falahi S, Kenarkoohi A. COVID-19-associated opportunistic infections: a snapshot on the current reports. Clin Exp Med. 2022;22:327.

Article  CAS  PubMed  Google Scholar 

Brooks D, Schulman-Rosenbaum R, Griff M, Lester J, Low Wang CC. Glucocorticoid-induced hyperglycemia including dexamethasone-associated hyperglycemia in COVID-19 infection: a systematic review. Endocr Pract. 2022;28:1166–77.

Article  PubMed  PubMed Central  Google Scholar 

Tavares LP, Negreiros-Lima GL, Lima KM, Silva EPMR, Pinho V, Teixeira MM, et al. Blame the signaling: Role of cAMP for the resolution of inflammation. Pharmacol Res. 2020;159:105030. https://doi.org/10.1016/j.phrs.2020.105030.

Article  CAS  PubMed  Google Scholar 

Aronoff DM, Carstens JK, Chen GH, Toews GB, Peters-Golden M. Short communication: differences between macrophages and dendritic cells in the cyclic AMP-dependent regulation of lipopolysaccharide-induced cytokine and chemokine synthesis. J Interferon Cytokine Res. 2006;26:827–33.

Article  CAS  PubMed  Google Scholar 

Konrad FM, Bury A, Schick MA, Ngamsri KC, Reutershan J. The unrecognized effects of phosphodiesterase 4 on epithelial cells in pulmonary inflammation. PLoS ONE. 2015;10: e0121725. https://doi.org/10.1371/journal.pone.0121725.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sousa LP, Carmo AF, Rezende BM, Lopes F, Silva DM, Alessandri AL, et al. Cyclic AMP enhances resolution of allergic pleurisy by promoting inflammatory cell apoptosis via inhibition of PI3K/Akt and NF-κB. Biochem Pharmacol. 2009;78:396–405.

Article  CAS  PubMed  Google Scholar 

Sheldon KE, Shandilya H, Kepka-Lenhart D, Poljakovic M, Ghosh A, Morris SM. Shaping the murine macrophage phenotype: IL-4 and cyclic AMP synergistically activate the arginase I promoter. J Immunol. 2013;191(5):2290–8. https://doi.org/10.4049/jimmunol.1202102.

Article  CAS  PubMed  Google Scholar 

Conti M, Beavo J. Biochemistry and physiology of cyclic nucleotide phosphodiesterases: Essential components in cyclic nucleotide signaling. Annu Rev Biochem. Annu Rev Biochem; 2007. p. 481–511.

Li H, Zuo J, Tang W. Phosphodiesterase-4 inhibitors for the treatment of inflammatory diseases. Front Pharmacol. 2018;9:1048.

Comments (0)

No login
gif