Kaplan GG, Windsor JW. The four epidemiological stages in the global evolution of inflammatory bowel disease. Nat Rev Gastroenterol Hepatol. 2021;18(1):56–66. https://doi.org/10.1038/s41575-020-00360-x.
Devarbhavi H, Asrani SK, Arab JP, Nartey YA, Pose E, Kamath PS. Global burden of liver disease: 2023 update. J Hepatol. 2023;79(2):516–37. https://doi.org/10.1016/j.jhep.2023.03.017.
Duan L, Cheng S, Li L, Liu Y, Wang D, Liu G. Natural anti-inflammatory compounds as drug candidates for inflammatory bowel disease. Front Pharmacol. 2021;12. https://doi.org/10.3389/fphar.2021.684486.
Article PubMed PubMed Central Google Scholar
Patel KM, Zhang J, Marsden J, Bays C, Mauldin PD, Schreiner AD. Missed and delayed diagnoses of chronic liver disease in primary care patients with cirrhosis. Dig Dis Sci. 2024;69(10):3721–8. https://doi.org/10.1007/s10620-024-08601-8.
Article CAS PubMed Google Scholar
Yanai H, Ban T, Wang Z, Choi MK, Kawamura T, Negishi H, et al. HMGB proteins function as universal sentinels for nucleic-acid-mediated innate immune responses. Nature. 2009;462(7269). https://doi.org/10.1038/nature08512.
Scaffidi P, Misteli T, Bianchi ME. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature. 2002;418(6894):191-5. DOI.
Andersson U, Yang H, Harris H. High-mobility group box 1 protein (HMGB1) operates as an alarmin outside as well as inside cells. Semin Immunol. 2018;38:40–8. https://doi.org/10.1016/j.smim.2018.02.011.
Article CAS PubMed Google Scholar
Taverna S, Tonacci A, Ferraro M, Cammarata G, Cuttitta G, Bucchieri S, et al. High mobility Group Box 1: Biological functions and Relevance in oxidative stress related chronic diseases. Cells. 2022;11(5). https://doi.org/10.3390/cells11050849.
Zhang Q-Y, Wu L-Q, Zhang T, Han Y-F, Lin X. Autophagy-mediated HMGB1 release promotes gastric cancer cell survival via RAGE activation of extracellular signal-regulated kinases 1/2. Oncol Rep. 2015;33(4):1630–8. https://doi.org/10.3892/or.2015.3782.
Article CAS PubMed PubMed Central Google Scholar
Bianchi ME, Falciola L, Ferrari S, Lilley DM. The DNA binding site of HMG1 protein is composed of two similar segments (HMG boxes), both of which have counterparts in other eukaryotic regulatory proteins. EMBO J. 1992;11(3):1055–63.
Article CAS PubMed PubMed Central Google Scholar
Hardman CH, Broadhurst RW, Raine AR, Grasser KD, Thomas JO, Laue ED. Structure of the A-domain of HMG1 and its interaction with DNA as studied by heteronuclear three- and four-dimensional NMR spectroscopy. Biochemistry. 1995;34(51):16596–607.
Article CAS PubMed Google Scholar
Chen R, Kang R, Tang D. The mechanism of HMGB1 secretion and release. Exp Mol Med. 2022;54(2). https://doi.org/10.1038/s12276-022-00736-w.
Bonaldi T, Talamo F, Scaffidi P, Ferrera D, Porto A, Bachi A, et al. Monocytic cells hyperacetylate chromatin protein HMGB1 to redirect it towards secretion. EMBO J. 2003;22(20):5551–60.
Article CAS PubMed PubMed Central Google Scholar
Lu B, Antoine DJ, Kwan K, Lundbäck P, Wähämaa H, Schierbeck H, et al. JAK/STAT1 signaling promotes HMGB1 hyperacetylation and nuclear translocation. Proc Natl Acad Sci U S A. 2014;111(8):3068–73. https://doi.org/10.1073/pnas.1316925111.
Article CAS PubMed PubMed Central Google Scholar
Kang R, Chen R, Zhang Q, Hou W, Wu S, Cao L, et al. HMGB1 in health and disease. Mol Aspects Med. 2014;40. https://doi.org/10.1016/j.mam.2014.05.001.
Tang D, Kang R, Livesey KM, Cheh C-W, Farkas A, Loughran P, et al. Endogenous HMGB1 regulates autophagy. J Cell Biol. 2010;190(5):881–92. https://doi.org/10.1083/jcb.200911078.
Article CAS PubMed PubMed Central Google Scholar
Tadie J-M, Bae H-B, Jiang S, Park DW, Bell CP, Yang H, et al. HMGB1 promotes neutrophil extracellular trap formation through interactions with toll-like receptor 4. Am J Physiol Lung Cell Mol Physiol. 2013;304(5):L342–9. https://doi.org/10.1152/ajplung.00151.2012.
Article CAS PubMed PubMed Central Google Scholar
Ahrens I, Chen Y-C, Topcic D, Bode M, Haenel D, Hagemeyer CE, et al. HMGB1 binds to activated platelets via the receptor for advanced glycation end products and is present in platelet rich human coronary artery thrombi. Thromb Haemost. 2015;114(5). https://doi.org/10.1160/TH14-12-1073.
Cai J, Yuan H, Wang Q, Yang H, Al-Abed Y, Hua Z, et al. HMGB1-driven inflammation and intimal hyperplasia after arterial injury involves cell-specific actions mediated by TLR4. Arterioscler Thromb Vasc Biol. 2015;35(12):2579–93. https://doi.org/10.1161/ATVBAHA.115.305789.
Article CAS PubMed PubMed Central Google Scholar
Li R, Zou X, Huang H, Yu Y, Zhang H, Liu P, et al. HMGB1/PI3K/Akt/mTOR signaling participates in the pathological process of Acute Lung Injury by regulating the maturation and function of dendritic cells. Front Immunol. 2020;11:1104. https://doi.org/10.3389/fimmu.2020.01104.
Article CAS PubMed PubMed Central Google Scholar
Lan J, Luo H, Wu R, Wang J, Zhou B, Zhang Y, et al. Internalization of HMGB1 (high mobility Group Box 1) promotes angiogenesis in endothelial cells. Arterioscler Thromb Vasc Biol. 2020;40(12):2922–40. https://doi.org/10.1161/ATVBAHA.120.315151.
Article CAS PubMed Google Scholar
Komai K, Shichita T, Ito M, Kanamori M, Chikuma S, Yoshimura A. Role of scavenger receptors as damage-associated molecular pattern receptors in toll-like receptor activation. Int Immunol. 2017;29(2):59–70. https://doi.org/10.1093/intimm/dxx010.
Article CAS PubMed Google Scholar
Chen X, Li L, Khan MN, Shi L, Wang Z, Zheng F, et al. HMGB1 exacerbates experimental mouse colitis by enhancing innate lymphoid cells 3 inflammatory responses via promoted IL-23 production. Innate Immun. 2016;22(8):696–705. https://doi.org/10.1177/1753425916669862.
Article CAS PubMed Google Scholar
Chen X, Bao S, Liu M, Han Z, Tan J, Zhu Q, et al. Inhibition of HMGB1 improves experimental mice colitis by mediating NETs and macrophage polarization. Cytokine. 2024;176:156537. https://doi.org/10.1016/j.cyto.2024.156537.
Article CAS PubMed Google Scholar
Mitchell J, Kim SJ, Howe C, Patel M, Kim G, Heo G, Chronic colitis alters brain activity by inducing HMGB1-mediated pyroptosis in mice, et al. Inflamm Bowel Dis. 2022;28(Supplement1):S56–S. https://doi.org/10.1093/ibd/izac015.089.
Mitchell J, Kim SJ, Howe C, Lee S, Her JY, Patel M, et al. Chronic intestinal inflammation suppresses brain activity by inducing neuroinflammation in mice. Am J Pathol. 2022;192(1):72–86. https://doi.org/10.1016/j.ajpath.2021.09.006.
Article CAS PubMed PubMed Central Google Scholar
Wang F, Luo L, Wu Z, Wan L, Li F, Wen Z. HMGB1 modulates macrophage metabolism and polarization in ulcerative colitis by inhibiting Cpt1a expression. Front Biosci (Landmark Ed). 2024;29(11):387. https://doi.org/10.31083/j.fbl2911387.
Palone F, Vitali R, Cucchiara S, Mennini M, Armuzzi A, Pugliese D, et al. Fecal HMGB1 reveals microscopic inflammation in Adult and Pediatric patients with inflammatory bowel disease in clinical and endoscopic remission. Inflamm Bowel Dis. 2016;22(12):2886–93.
Chen X, Wu J, Liu M, Han Z, Tan J, Zhu Q, et al. HMGB1 impacts the intestinal epithelial barrier by initiating NETs to regulate macrophage polarization. Gen Physiol Biophys. 2024;43(6):545–54. https://doi.org/10.4149/gpb_2024034.
Article CAS PubMed Google Scholar
Zhang K, Guo J, Yan W, Xu L. Macrophage polarization in inflammatory bowel disease. Cell Commun Signal. 2023;21(1):367. https://doi.org/10.1186/s12964-023-01386-9.
Article CAS PubMed PubMed Central Google Scholar
Qian W, Huang L, Xu Y, Lu W, Wen W, Guo Z, et al. Hypoxic ASCs-derived exosomes attenuate colitis by regulating macrophage polarization via miR-216a-5p/HMGB1 Axis. Inflamm Bowel Dis. 2023;29(4):602–19. https://doi.org/10.1093/ibd/izac225.
Sonnenberg A. Occupational distribution of inflammatory bowel disease among German employees. Gut. 1990;31(9):1037-40. DOI.
Tang Y, Preuss F, Turek FW, Jakate S, Keshavarzian A. Sleep deprivation worsens inflammation and delays recovery in a mouse model of colitis. Sleep Med. 2009;10(6):597–603. https://doi.org/10.1016/j.sleep.2008.12.009.
Comments (0)