Kaprin, A.D., Starinskii, V.V., and Shakhzadova, A.O., Zlokachestvennye novoobrazovaniya v Rossii v 2019 godu (zabolevaemost' i smertnost’) (Malignant Neoplasms in Russia in 2019 (Morbidity and Mortality)), Moscow: Mosk. Naucho-Issled. Onkol. Inst. im. P.A. Gertsena, 2020.
Wadowska, K., Bil-Lula, I., Trembecki, Ł., and Śliwińska-Mossoń, M., Genetic markers in lung cancer diagnosis: a review, Int. J. Mol. Sci., 2020, vol. 21, no. 13. https://doi.org/10.3390/ijms21134569
Rodionov, E.O., Tuzikov, S.A., Miller, S.V., et al., Methods for early detection of lung cancer (a review), Sib. J. Oncol., 2020, vol. 19, no. 4, pp. 112—122. https://doi.org/10.21294/1814-4861-2020-19-4-112-122
Nanavaty, P., Alvarez, M.S., and Alberts, W.M., Lung cancer screening: advantages, controversies, and applications, Cancer Control, 2014, vol. 21, no. 1, pp. 9—14. https://doi.org/10.1177/107327481402100102
Hubers, A.J., Prinsen, C.F., Sozzi, G., et al., Molecular sputum analysis for the diagnosis of lung cancer, Br. J. Cancer, 2013, vol. 109, no. 3, pp. 530—537. https://doi.org/10.1038/bjc.2013.393
Article CAS PubMed PubMed Central Google Scholar
Ganeev, A.A., Gubal, A.R., Lukyano, G.N., et al., Analysis of exhaled air for early-stage diagnosis of lung cancer: opportunities and challenges, Russ. Chem. Rev., 2017, vol. 87, no. 9, p. 904. https://doi.org/10.1070/RCR4831
Sidransky, D., The oral cavity as a molecular mirror of lung carcinogenesis, Cancer Prev. Res. (Phila), 2008, vol. 1, no. 1, pp. 12—14. https://doi.org/10.1158/1940-6207.CAPR-08-0093
Bhutani, N., Burns, D.M., and Blay, H.M., DNA demethylation dynamics, Cell, 2011, vol. 146, no. 6, pp. 866—872. https://doi.org/10.1016/j.cell.2011.08.042
Article CAS PubMed PubMed Central Google Scholar
Kömerik, N., Yüce, E., Calapoğlu, N.S., et al., Oral mucosa and lung cancer: are genetic changes in the oral epithelium associated with lung cancer?, Niger. J. Clin. Pract., 2017, vol. 20, no. 1, pp. 12—18. https://doi.org/10.4103/1119-3077.181396
Shtivelman, E., Hensing, T., Simon, G.R., et al., Molecular pathways and therapeutic targets in lung cancer, OncoTarget, 2014, vol. 5, no. 6, pp. 1392—1433. https://doi.org/10.18632/oncotarget.1891
Article PubMed PubMed Central Google Scholar
Collisson, E.A., Campbell, J.D., Brooks, A.N., et al., The Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma, Nature, 2014, vol. 511, pp. 543—550. https://doi.org/10.1038/nature13385
Imielinski, M., Berger, A.H., Hammerman, P.S., et al., Mapping the hallmarks of lung adenocarcinoma with massively parallel sequencing, Cell, 2012, vol. 150, no. 6, pp. 1107—1120. https://doi.org/10.1016/j.cell.2012.08.029
Article CAS PubMed PubMed Central Google Scholar
Rodgers, K., Cancer Genome Atlas Research Network. Сomprehensive molecular profiling of lung adenocarcinoma, Nature, 2018, vol. 559, no. 7715. https://doi.org/10.1038/s41586-018-0228-6
Levy, M.A., Lovly, C.M., and Pao, W., Translating genomic information into clinical medicine: lung cancer as a paradigm, Genome Res., 2012, vol. 22, no. 11, pp. 2101—2108. https://doi.org/10.1101/gr.131128.111
Article CAS PubMed PubMed Central Google Scholar
Drilon, A., Wang, L., Arcila, M.E., et al., Broad, hybrid capture-based next-generation sequencing identifies actionable genomic alterations in lung adenocarcinomas otherwise negative for such alterations by other genomic testing approaches, Clin. Cancer Res., 2015, vol. 21, no. 16, pp. 3631—3639. https://doi.org/10.1158/1078-0432.CCR-14-2683
Article PubMed PubMed Central Google Scholar
Liu, L., Liu, J., Shao, D., et al., Comprehensive genomic profiling of lung cancer using a validated panel to explore therapeutic targets in East Asian patients, Cancer Sci., 2017, vol. 108, no. 12, pp. 2487—2494. https://doi.org/10.1111/cas.13410
Article CAS PubMed PubMed Central Google Scholar
Rooney, M., Devarakonda, S., and Govindan, R., Genomics of squamous cell lung cancer, Oncologist, 2013, vol. 18, no. 6, pp. 707—716. https://doi.org/10.1634/theoncologist.2013-0063
Article CAS PubMed PubMed Central Google Scholar
Rodgers, K., Cancer Genome Atlas Research Network. Comprehensive genomic characterization of squamous cell lung cancers, Nature, 2012, vol. 489, no. 7417, pp. 519—525. https://doi.org/10.1038/nature11404
Kim, Y., Hammerman, P.S., Kim, J., et al., Integrative and comparative genomic analysis of lung squamous cell carcinomas in East Asian patients, J. Clin. Oncol., 2014, vol. 32, no. 2, pp. 121—128. https://doi.org/10.1200/JCO.2013.50.8556
Article CAS PubMed Google Scholar
Wang, R., Pan, Y., Li, C., et al., Analysis of major known driver mutations and prognosis in resected adenosquamous lung carcinomas, J. Thorac. Oncol., 2014, vol. 9, no. 6, pp. 760—768. https://doi.org/10.1097/JTO.0b013e3182a406d1
Article CAS PubMed Google Scholar
Voortman, J., Lee, J.H., Killian, J.K., et al., Array comparative genomic hybridization-based characterization of genetic alterations in pulmonary neuroendocrine tumors, Proc. Natl. Acad. Sci. U.S.A., 2010, vol. 107, no. 29, pp. 13040—13045. https://doi.org/10.1073/pnas.1008132107
Article PubMed PubMed Central Google Scholar
Imielinski, M., Berger, A.H., Hammerman, P.S., et al., Mapping the hallmarks of lung adenocarcinoma with massively parallel sequencing, Cell, 2012, vol. 150, no. 6, pp. 1107—1120. https://doi.org/10.1016/j.cell.2012.08.029
Article CAS PubMed PubMed Central Google Scholar
Zwick, E., Bange, J., and Ullrich, A., Receptor tyrosine kinase signalling as a target for cancer intervention strategies, Endocr.-Relat. Cancer J., 2001, vol. 8, no. 3, pp. 161—173. https://doi.org/10.1677/erc.0.0080161
Small, D., FLT3 mutations: biology and treatment, Hematology, 2006, vol. 1, pp. 178—184. https://doi.org/10.1182/asheducation-2006.1.178
Uscanga-Perales, G.I., Santuario-Facio, S.K., Sanchez-Dominguez, C.N., et al., Genetic alterations of triple negative breast cancer (TNBC) in women from Northeastern Mexico, Oncol. Lett., 2019, vol. 17, no. 3, pp. 3581—3588. https://doi.org/10.3892/ol.2019.9984
Article CAS PubMed PubMed Central Google Scholar
Guo, M., Tomoshige, K., Meister, M., et al., Gene signature driving invasive mucinous adenocarcinoma of the lung, EMBO Mol. Med., 2017, vol. 9, no. 4, pp. 462—481. https://doi.org/10.15252/emmm.201606711
Article CAS PubMed PubMed Central Google Scholar
Qiu, Z., Ye, B., Wang, K., et al., Unique genetic characteristics and clinical prognosis of female patients with lung cancer harboring RET fusion gene, Sci. Rep., 2020, vol. 1, no. 10, p. 10387. https://doi.org/10.1038/s41598-020-66883-0
Zhuo, Y.J., Shi, Y., and Wu, T., NRP-1 and KDR polymorphisms are associated with survival time in patients with advanced gastric cancer, Oncol. Lett., 2019, vol. 18, no. 5, pp. 4629—4638. https://doi.org/10.3892/ol.2019.10842
Article CAS PubMed PubMed Central Google Scholar
Cebrián, A., Gómez Del Pulgar, T., Méndez-Vidal, M.J., et al., Functional PTGS2 polymorphism-based models as novel predictive markers in metastatic renal cell carcinoma patients receiving first-line sunitinib, Sci. Rep., 2017, vol. 7. https://doi.org/10.1038/srep41371
O’Brien, T.J., Harralson, A.F., Tran, T., et al., Kinase insert domain receptor/vascular endothelial growth factor receptor 2 (KDR) genetic variation is associated with ovarian hyperstimulation syndrome, Reprod. Biol. Endocrinol., 2014, vol. 12. https://doi.org/10.1186/1477-7827-12-36
Jastania, R.A., Saeed, M., Al-Khalidi, H., et al., Adamantinomatous craniopharyngioma in an adult: a case report with NGS analysis, Int. Med. Case Rep. J., 2020, vol. 13, pp. 123—137. https://doi.org/10.2147/IMCRJ.S243405
Article PubMed PubMed Central Google Scholar
Goriely, A., Hansen, R.M., Taylor, I.B., et al., Activating mutations in FGFR3 and HRAS reveal a shared genetic origin for congenital disorders and testicular tumors, Nat. Genet., 2009, vol. 41, no. 11, pp. 1247—1252. https://doi.org/10.1038/ng.470
Comments (0)