Comparative Analysis of Mutation in the Buccal Epithelium and Blood in Patients with Lung Cancer and Healthy People

Kaprin, A.D., Starinskii, V.V., and Shakhzadova, A.O., Zlokachestvennye novoobrazovaniya v Rossii v 2019 godu (zabolevaemost' i smertnost’) (Malignant Neoplasms in Russia in 2019 (Morbidity and Mortality)), Moscow: Mosk. Naucho-Issled. Onkol. Inst. im. P.A. Gertsena, 2020.

Wadowska, K., Bil-Lula, I., Trembecki, Ł., and Śliwińska-Mossoń, M., Genetic markers in lung cancer diagnosis: a review, Int. J. Mol. Sci., 2020, vol. 21, no. 13. https://doi.org/10.3390/ijms21134569

Rodionov, E.O., Tuzikov, S.A., Miller, S.V., et al., Methods for early detection of lung cancer (a review), Sib. J. Oncol., 2020, vol. 19, no. 4, pp. 112—122. https://doi.org/10.21294/1814-4861-2020-19-4-112-122

Article  Google Scholar 

Nanavaty, P., Alvarez, M.S., and Alberts, W.M., Lung cancer screening: advantages, controversies, and applications, Cancer Control, 2014, vol. 21, no. 1, pp. 9—14. https://doi.org/10.1177/107327481402100102

Article  PubMed  Google Scholar 

Hubers, A.J., Prinsen, C.F., Sozzi, G., et al., Molecular sputum analysis for the diagnosis of lung cancer, Br. J. Cancer, 2013, vol. 109, no. 3, pp. 530—537. https://doi.org/10.1038/bjc.2013.393

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ganeev, A.A., Gubal, A.R., Lukyano, G.N., et al., Analysis of exhaled air for early-stage diagnosis of lung cancer: opportunities and challenges, Russ. Chem. Rev., 2017, vol. 87, no. 9, p. 904. https://doi.org/10.1070/RCR4831

Article  Google Scholar 

Sidransky, D., The oral cavity as a molecular mirror of lung carcinogenesis, Cancer Prev. Res. (Phila), 2008, vol. 1, no. 1, pp. 12—14. https://doi.org/10.1158/1940-6207.CAPR-08-0093

Article  Google Scholar 

Bhutani, N., Burns, D.M., and Blay, H.M., DNA demethylation dynamics, Cell, 2011, vol. 146, no. 6, pp. 866—872. https://doi.org/10.1016/j.cell.2011.08.042

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kömerik, N., Yüce, E., Calapoğlu, N.S., et al., Oral mucosa and lung cancer: are genetic changes in the oral epithelium associated with lung cancer?, Niger. J. Clin. Pract., 2017, vol. 20, no. 1, pp. 12—18. https://doi.org/10.4103/1119-3077.181396

Article  PubMed  Google Scholar 

Shtivelman, E., Hensing, T., Simon, G.R., et al., Molecular pathways and therapeutic targets in lung cancer, OncoTarget, 2014, vol. 5, no. 6, pp. 1392—1433. https://doi.org/10.18632/oncotarget.1891

Article  PubMed  PubMed Central  Google Scholar 

Collisson, E.A., Campbell, J.D., Brooks, A.N., et al., The Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma, Nature, 2014, vol. 511, pp. 543—550. https://doi.org/10.1038/nature13385

Article  CAS  Google Scholar 

Imielinski, M., Berger, A.H., Hammerman, P.S., et al., Mapping the hallmarks of lung adenocarcinoma with massively parallel sequencing, Cell, 2012, vol. 150, no. 6, pp. 1107—1120. https://doi.org/10.1016/j.cell.2012.08.029

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rodgers, K., Cancer Genome Atlas Research Network. Сomprehensive molecular profiling of lung adenocarcinoma, Nature, 2018, vol. 559, no. 7715. https://doi.org/10.1038/s41586-018-0228-6

Levy, M.A., Lovly, C.M., and Pao, W., Translating genomic information into clinical medicine: lung cancer as a paradigm, Genome Res., 2012, vol. 22, no. 11, pp. 2101—2108. https://doi.org/10.1101/gr.131128.111

Article  CAS  PubMed  PubMed Central  Google Scholar 

Drilon, A., Wang, L., Arcila, M.E., et al., Broad, hybrid capture-based next-generation sequencing identifies actionable genomic alterations in lung adenocarcinomas otherwise negative for such alterations by other genomic testing approaches, Clin. Cancer Res., 2015, vol. 21, no. 16, pp. 3631—3639. https://doi.org/10.1158/1078-0432.CCR-14-2683

Article  PubMed  PubMed Central  Google Scholar 

Liu, L., Liu, J., Shao, D., et al., Comprehensive genomic profiling of lung cancer using a validated panel to explore therapeutic targets in East Asian patients, Cancer Sci., 2017, vol. 108, no. 12, pp. 2487—2494. https://doi.org/10.1111/cas.13410

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rooney, M., Devarakonda, S., and Govindan, R., Genomics of squamous cell lung cancer, Oncologist, 2013, vol. 18, no. 6, pp. 707—716. https://doi.org/10.1634/theoncologist.2013-0063

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rodgers, K., Cancer Genome Atlas Research Network. Comprehensive genomic characterization of squamous cell lung cancers, Nature, 2012, vol. 489, no. 7417, pp. 519—525. https://doi.org/10.1038/nature11404

Article  CAS  Google Scholar 

Kim, Y., Hammerman, P.S., Kim, J., et al., Integrative and comparative genomic analysis of lung squamous cell carcinomas in East Asian patients, J. Clin. Oncol., 2014, vol. 32, no. 2, pp. 121—128. https://doi.org/10.1200/JCO.2013.50.8556

Article  CAS  PubMed  Google Scholar 

Wang, R., Pan, Y., Li, C., et al., Analysis of major known driver mutations and prognosis in resected adenosquamous lung carcinomas, J. Thorac. Oncol., 2014, vol. 9, no. 6, pp. 760—768. https://doi.org/10.1097/JTO.0b013e3182a406d1

Article  CAS  PubMed  Google Scholar 

Voortman, J., Lee, J.H., Killian, J.K., et al., Array comparative genomic hybridization-based characterization of genetic alterations in pulmonary neuroendocrine tumors, Proc. Natl. Acad. Sci. U.S.A., 2010, vol. 107, no. 29, pp. 13040—13045. https://doi.org/10.1073/pnas.1008132107

Article  PubMed  PubMed Central  Google Scholar 

Imielinski, M., Berger, A.H., Hammerman, P.S., et al., Mapping the hallmarks of lung adenocarcinoma with massively parallel sequencing, Cell, 2012, vol. 150, no. 6, pp. 1107—1120. https://doi.org/10.1016/j.cell.2012.08.029

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zwick, E., Bange, J., and Ullrich, A., Receptor tyrosine kinase signalling as a target for cancer intervention strategies, Endocr.-Relat. Cancer J., 2001, vol. 8, no. 3, pp. 161—173. https://doi.org/10.1677/erc.0.0080161

Article  CAS  Google Scholar 

Small, D., FLT3 mutations: biology and treatment, Hematology, 2006, vol. 1, pp. 178—184. https://doi.org/10.1182/asheducation-2006.1.178

Article  Google Scholar 

Uscanga-Perales, G.I., Santuario-Facio, S.K., Sanchez-Dominguez, C.N., et al., Genetic alterations of triple negative breast cancer (TNBC) in women from Northeastern Mexico, Oncol. Lett., 2019, vol. 17, no. 3, pp. 3581—3588. https://doi.org/10.3892/ol.2019.9984

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guo, M., Tomoshige, K., Meister, M., et al., Gene signature driving invasive mucinous adenocarcinoma of the lung, EMBO Mol. Med., 2017, vol. 9, no. 4, pp. 462—481. https://doi.org/10.15252/emmm.201606711

Article  CAS  PubMed  PubMed Central  Google Scholar 

Qiu, Z., Ye, B., Wang, K., et al., Unique genetic characteristics and clinical prognosis of female patients with lung cancer harboring RET fusion gene, Sci. Rep., 2020, vol. 1, no. 10, p. 10387. https://doi.org/10.1038/s41598-020-66883-0

Article  CAS  Google Scholar 

Zhuo, Y.J., Shi, Y., and Wu, T., NRP-1 and KDR polymorphisms are associated with survival time in patients with advanced gastric cancer, Oncol. Lett., 2019, vol. 18, no. 5, pp. 4629—4638. https://doi.org/10.3892/ol.2019.10842

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cebrián, A., Gómez Del Pulgar, T., Méndez-Vidal, M.J., et al., Functional PTGS2 polymorphism-based models as novel predictive markers in metastatic renal cell carcinoma patients receiving first-line sunitinib, Sci. Rep., 2017, vol. 7. https://doi.org/10.1038/srep41371

O’Brien, T.J., Harralson, A.F., Tran, T., et al., Kinase insert domain receptor/vascular endothelial growth factor receptor 2 (KDR) genetic variation is associated with ovarian hyperstimulation syndrome, Reprod. Biol. Endocrinol., 2014, vol. 12. https://doi.org/10.1186/1477-7827-12-36

Jastania, R.A., Saeed, M., Al-Khalidi, H., et al., Adamantinomatous craniopharyngioma in an adult: a case report with NGS analysis, Int. Med. Case Rep. J., 2020, vol. 13, pp. 123—137. https://doi.org/10.2147/IMCRJ.S243405

Article  PubMed  PubMed Central  Google Scholar 

Goriely, A., Hansen, R.M., Taylor, I.B., et al., Activating mutations in FGFR3 and HRAS reveal a shared genetic origin for congenital disorders and testicular tumors, Nat. Genet., 2009, vol. 41, no. 11, pp. 1247—1252. https://doi.org/10.1038/ng.470

Article  CAS  PubMed  PubMed Central 

Comments (0)

No login
gif