Salojärvi, J., Smolander, O.P., Nieminen, K., et al., Genome sequencing and population genomic analyses provide insights into the adaptive landscape of silver birch, Nat. Genet., 2017, vol. 49, pp. 904—912. https://doi.org/10.1038/ng.3862
Article CAS PubMed Google Scholar
Koski, V. and Rousi, M., A review of the promises and constraints of breeding silver birch (Betula pendula Roth) in Finland, For.: Int. J. For. Res., 2005, vol. 78, pp. 187—198. https://doi.org/10.1093/forestry/cpi017
Lyubavskaya, A.Ya., Karel’skaya bereza (Karelian Birch), Moscow: Lesnaya Promyshlennost’, 1978.
Novitskaya, L.L., Karel’skaya bereza: mekhanizmy rosta i razvitiya strukturnykh anomalii (Karelian Birch: Mechanisms of Growth and Development of Structural Anomalies), Petrozavodsk: Verso, 2008.
Novitskaya, L., Nikolaeva, N., and Tarelkina, T., Endogenous variability of the figured wood of Karelian birch, Wulfenia, 2016, vol. 23, pp. 175—188.
Galibina, N.A., Novitskaya, L.L., Nikerova, K.M., et al., Labile nitrogen availability in soil influences the expression of wood pattern in Karelian birch, Bot. Zh., 2019, vol. 104, no. 10, pp. 1598—1609. https://doi.org/10.1134/S0006813619100053
Galibina, N.A., Novitskaya, L.L., Moshchenskaya, Y.L., and Krasavina, M.S., Activity of sucrose synthase in trunk tissues of Karelian birch during cambial growth, Russ. J. Plant Physiol., 2015, vol. 62, pp. 381—389. https://doi.org/10.1134/S102144371503005X
Galibina, N.A., Novitskaya, L.L., Krasavina, M.S., and Moshchenskaya, J.L., Invertase activity in trunk tissues of Karelian birch, Russ. J. Plant Physiol., 2015, vol. 62, pp. 753—760. https://doi.org/10.1134/S1021443715060060
Moshchenskaya, Y.L., Galibina, N.A., Topchieva, L.V., and Novitskaya, L.L., Expression of genes encoding sucrose synthase isoforms during anomalous xylogenesis in Karelian birch, Russ. J. Plant Physiol., 2017, vol. 64, pp. 616—624. https://doi.org/10.1134/S1021443717030104
Novitskaya, L.L., Nikolaeva, N.N., Galibina, N.A., et al., The greatest density of parenchyma inclusions in Karelian birch wood occurs at confluences of phloem flows, Silva Fenn., 2016, vol. 50, pp. 1461—1478. https://doi.org/10.14214/sf.1461
Galibina, N.A., Novitskaya, L.L., and Nikerova, K.M., Source–sink relations in the organs and tissues of silver birch during different scenarios of xylogenesis, Russ. J. Plant Physiol., 2019, vol. 66, pp. 308—315. https://doi.org/10.1134/S1021443719020067
Mahboubi, A. and Niittyla, T., Sucrose transport and carbon fluxes during wood formation, Physiol. Plant., 2018, vol. 164, pp. 67—81. https://doi.org/10.1111/ppl.12729
Article CAS PubMed Google Scholar
van Bel, A.J.E., Xylem—phloem exchange via the rays: the undervalued route of transport, J. Exp. Bot., 1990, vol. 41, pp. 631—644. https://doi.org/10.1093/jxb/41.6.631
Sauter, J.J., The Strasburger cells—equivalents of companion cells, Ber. Dtsch. Bot. Ges., 1980, vol. 93, pp. 29—42.
Sauter, J.J. and Kloth, S., Plasmodesmatal frequency and radial translocation rates in ray cells of poplar (Populus × canadensis Moench ‘robusta’), Planta, 1986, vol. 168, pp. 377—380. https://doi.org/10.1007/BF00392363
Article CAS PubMed Google Scholar
Roach, M., Arrivault, S., Mahboubi, A., et al., Spatially resolved metabolic analysis reveals a central role for transcriptional control in carbon allocation to wood, J. Exp. Bot., 2017, vol. 68, pp. 3529—3539. https://doi.org/10.1093/jxb/erx200
Article CAS PubMed PubMed Central Google Scholar
Uggla, C., Magel, E., Moritz, T., and Sundberg, B., Function and dynamics of auxin and carbohydrates during earlywood/latewood transition in Scots pine, Plant Physiol., 2001, vol. 125, pp. 2029—2039. https://doi.org/10.1104/pp.125.4.2029
Article CAS PubMed PubMed Central Google Scholar
Sokołowska, K. and Zagórska-Marek, B., Symplasmic, long-distance transport in xylem and cambial regions in branches of Acer pseudoplatanus (Aceraceae) and Populus tremula × P. tremuloides (Salicaceae), Am. J. Bot., 2012, vol. 99, pp. 1745—1755. https://doi.org/10.3732/ajb.1200349
Weise, A., Barker, L., Kühn, C., et al., A new subfamily of sucrose transporters, SUT4, with low affinity/high capacity localized in enucleate sieve elements of plants, Plant Cell, 2000, vol. 12, pp. 1345—1355. https://doi.org/10.1105/tpc.12.8.1345
Article CAS PubMed PubMed Central Google Scholar
Stadler, R., Brandner, J., Schulz, A., et al., Phloem loading by the PmSUC2 sucrose carrier from Plantago major occurs into companion cells, Plant Cell., 1995, vol. 7, pp. 1545—1554. https://doi.org/10.1105/tpc.7.10.1545
Article CAS PubMed PubMed Central Google Scholar
Baker, R.F., Leach, K.A., Boyer, N.R., et al., Sucrose transporter ZmSut1 expression and localization uncover new insights into sucrose phloem loading, Plant Physiol., 2016, vol. 172, pp. 1876—1898. https://doi.org/10.1104/pp.16.00884
Article CAS PubMed PubMed Central Google Scholar
Wang, Y., Chen, Y., Wei, Q., et al., Phylogenetic relationships of sucrose transporters (SUTs) in plants and genome-wide characterization of SUT genes in Orchidaceae reveal roles in floral organ development, Peer J., 2021, vol. 9. https://doi.org/10.7717/peerj.11961
Aoki, N., Hirose, T., Scofield, G.N., et al., The sucrose transporter gene family in rice, Plant Cell Physiol., 2003, vol. 44, pp. 223—232. https://doi.org/10.1093/pcp/pcg030
Article CAS PubMed Google Scholar
Barth, I., Meyer, S., and Sauer, N., PmSUC3: characterization of a SUT2/SUC3-type sucrose transporter from Plantago major, Plant Cell., 2003, vol. 15, pp. 1375—1385. https://doi.org/10.1105/tpc.010967
Article CAS PubMed PubMed Central Google Scholar
Meyer, S., Lauterbach, C., Niedermeier, M., et al., Wounding enhances expression of AtSUC3, a sucrose transporter from Arabidopsis sieve elements and sink tissues, Plant Physiol., 2004, vol. 134, pp. 684—693. https://doi.org/10.1104/pp.103.033399
Article CAS PubMed PubMed Central Google Scholar
Hackel, A., Schauer, N., Carrari, F., et al., Sucrose transporter LeSUT1 and LeSUT2 inhibition affects tomato fruit development in different ways, Plant J., 2004, vol. 45, pp. 180—192. https://doi.org/10.1111/j.1365-313X.2005.02572.x
Peng, D., Gu, X., Xue, L.-J., et al., Bayesian phylogeny of sucrose transporters: ancient origins, differential expansion and convergent evolution in monocots and dicots, Front. Plant Sci., 2014, vol. 5, no. 615, pp. 1—12. https://doi.org/10.3389/fpls.2014.00615
Chen, H.Y., Huh, J.H., Yu, Y.C., et al., The Arabidopsis vacuolar sugar transporter SWEET2 limits carbon sequestration from roots and restricts Pythium infection, Plant J., 2015, vol. 83, pp. 1046—1058. https://doi.org/10.1111/tpj.12948
Article CAS PubMed Google Scholar
Bock, K.W., Honys, D., Ward, J.M., et al., Integrating membrane transport with male gametophyte development and function through transcriptomics, Plant Physiol., 2006, vol. 140, pp. 1151—1168. https://doi.org/10.1104/pp.105.074708
Article CAS PubMed PubMed Central Google Scholar
Guan, Y.F., Huang, X.Y., Zhu, J., et al., RUPTURED POLLEN GRAIN1, a member of the MtN3/saliva gene family, is crucial for exine pattern formation and cell integrity of microspores in Arabidopsis, Plant Physiol., 2008, vol. 147, pp. 852—863. https://doi.org/10.1104/pp.108.118026
Article CAS PubMed PubMed Central Google Scholar
Zhang, L., Wang, L. Zhang, J., et al., Expression and localization of SWEETs in Populus and the effect of SWEET7 overexpression in secondary growth, Tree Physiol., 2020, vol. 41, pp. 882—899. https://doi.org/10.1093/treephys/tpaa145
Slewinski, T.L., Diverse functional roles of monosaccharide transporters and their homologs in vascular plants: a physiological perspective, Mol. Plant, 2011, vol. 4, pp. 641—662. https://doi.org/10.1093/mp/ssr051Li
Article CAS PubMed Google Scholar
Afoufa-Bastien, D., Medici, A., Jeauffre, J., et al., The Vitis vinifera sugar transporter gene family: phylogenetic overview and macroarray
Comments (0)