Genome-Wide Identification and Characterization of Sugar Transporter Genes in Silver Birch

Salojärvi, J., Smolander, O.P., Nieminen, K., et al., Genome sequencing and population genomic analyses provide insights into the adaptive landscape of silver birch, Nat. Genet., 2017, vol. 49, pp. 904—912. https://doi.org/10.1038/ng.3862

Article  CAS  PubMed  Google Scholar 

Koski, V. and Rousi, M., A review of the promises and constraints of breeding silver birch (Betula pendula Roth) in Finland, For.: Int. J. For. Res., 2005, vol. 78, pp. 187—198. https://doi.org/10.1093/forestry/cpi017

Article  Google Scholar 

Lyubavskaya, A.Ya., Karel’skaya bereza (Karelian Birch), Moscow: Lesnaya Promyshlennost’, 1978.

Novitskaya, L.L., Karel’skaya bereza: mekhanizmy rosta i razvitiya strukturnykh anomalii (Karelian Birch: Mechanisms of Growth and Development of Structural Anomalies), Petrozavodsk: Verso, 2008.

Novitskaya, L., Nikolaeva, N., and Tarelkina, T., Endogenous variability of the figured wood of Karelian birch, Wulfenia, 2016, vol. 23, pp. 175—188.

Google Scholar 

Galibina, N.A., Novitskaya, L.L., Nikerova, K.M., et al., Labile nitrogen availability in soil influences the expression of wood pattern in Karelian birch, Bot. Zh., 2019, vol. 104, no. 10, pp. 1598—1609. https://doi.org/10.1134/S0006813619100053

Article  Google Scholar 

Galibina, N.A., Novitskaya, L.L., Moshchenskaya, Y.L., and Krasavina, M.S., Activity of sucrose synthase in trunk tissues of Karelian birch during cambial growth, Russ. J. Plant Physiol., 2015, vol. 62, pp. 381—389. https://doi.org/10.1134/S102144371503005X

Article  CAS  Google Scholar 

Galibina, N.A., Novitskaya, L.L., Krasavina, M.S., and Moshchenskaya, J.L., Invertase activity in trunk tissues of Karelian birch, Russ. J. Plant Physiol., 2015, vol. 62, pp. 753—760. https://doi.org/10.1134/S1021443715060060

Article  CAS  Google Scholar 

Moshchenskaya, Y.L., Galibina, N.A., Topchieva, L.V., and Novitskaya, L.L., Expression of genes encoding sucrose synthase isoforms during anomalous xylogenesis in Karelian birch, Russ. J. Plant Physiol., 2017, vol. 64, pp. 616—624. https://doi.org/10.1134/S1021443717030104

Article  CAS  Google Scholar 

Novitskaya, L.L., Nikolaeva, N.N., Galibina, N.A., et al., The greatest density of parenchyma inclusions in Karelian birch wood occurs at confluences of phloem flows, Silva Fenn., 2016, vol. 50, pp. 1461—1478. https://doi.org/10.14214/sf.1461

Article  Google Scholar 

Galibina, N.A., Novitskaya, L.L., and Nikerova, K.M., Source–sink relations in the organs and tissues of silver birch during different scenarios of xylogenesis, Russ. J. Plant Physiol., 2019, vol. 66, pp. 308—315. https://doi.org/10.1134/S1021443719020067

Article  CAS  Google Scholar 

Mahboubi, A. and Niittyla, T., Sucrose transport and carbon fluxes during wood formation, Physiol. Plant., 2018, vol. 164, pp. 67—81. https://doi.org/10.1111/ppl.12729

Article  CAS  PubMed  Google Scholar 

van Bel, A.J.E., Xylem—phloem exchange via the rays: the undervalued route of transport, J. Exp. Bot., 1990, vol. 41, pp. 631—644. https://doi.org/10.1093/jxb/41.6.631

Article  Google Scholar 

Sauter, J.J., The Strasburger cells—equivalents of companion cells, Ber. Dtsch. Bot. Ges., 1980, vol. 93, pp. 29—42.

Article  CAS  Google Scholar 

Sauter, J.J. and Kloth, S., Plasmodesmatal frequency and radial translocation rates in ray cells of poplar (Populus × canadensis Moench ‘robusta’), Planta, 1986, vol. 168, pp. 377—380. https://doi.org/10.1007/BF00392363

Article  CAS  PubMed  Google Scholar 

Roach, M., Arrivault, S., Mahboubi, A., et al., Spatially resolved metabolic analysis reveals a central role for transcriptional control in carbon allocation to wood, J. Exp. Bot., 2017, vol. 68, pp. 3529—3539. https://doi.org/10.1093/jxb/erx200

Article  CAS  PubMed  PubMed Central  Google Scholar 

Uggla, C., Magel, E., Moritz, T., and Sundberg, B., Function and dynamics of auxin and carbohydrates during earlywood/latewood transition in Scots pine, Plant Physiol., 2001, vol. 125, pp. 2029—2039. https://doi.org/10.1104/pp.125.4.2029

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sokołowska, K. and Zagórska-Marek, B., Symplasmic, long-distance transport in xylem and cambial regions in branches of Acer pseudoplatanus (Aceraceae) and Populus tremula × P. tremuloides (Salicaceae), Am. J. Bot., 2012, vol. 99, pp. 1745—1755. https://doi.org/10.3732/ajb.1200349

Article  PubMed  Google Scholar 

Weise, A., Barker, L., Kühn, C., et al., A new subfamily of sucrose transporters, SUT4, with low affinity/high capacity localized in enucleate sieve elements of plants, Plant Cell, 2000, vol. 12, pp. 1345—1355. https://doi.org/10.1105/tpc.12.8.1345

Article  CAS  PubMed  PubMed Central  Google Scholar 

Stadler, R., Brandner, J., Schulz, A., et al., Phloem loading by the PmSUC2 sucrose carrier from Plantago major occurs into companion cells, Plant Cell., 1995, vol. 7, pp. 1545—1554. https://doi.org/10.1105/tpc.7.10.1545

Article  CAS  PubMed  PubMed Central  Google Scholar 

Baker, R.F., Leach, K.A., Boyer, N.R., et al., Sucrose transporter ZmSut1 expression and localization uncover new insights into sucrose phloem loading, Plant Physiol., 2016, vol. 172, pp. 1876—1898. https://doi.org/10.1104/pp.16.00884

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang, Y., Chen, Y., Wei, Q., et al., Phylogenetic relationships of sucrose transporters (SUTs) in plants and genome-wide characterization of SUT genes in Orchidaceae reveal roles in floral organ development, Peer J., 2021, vol. 9. https://doi.org/10.7717/peerj.11961

Aoki, N., Hirose, T., Scofield, G.N., et al., The sucrose transporter gene family in rice, Plant Cell Physiol., 2003, vol. 44, pp. 223—232. https://doi.org/10.1093/pcp/pcg030

Article  CAS  PubMed  Google Scholar 

Barth, I., Meyer, S., and Sauer, N., PmSUC3: characterization of a SUT2/SUC3-type sucrose transporter from Plantago major, Plant Cell., 2003, vol. 15, pp. 1375—1385. https://doi.org/10.1105/tpc.010967

Article  CAS  PubMed  PubMed Central  Google Scholar 

Meyer, S., Lauterbach, C., Niedermeier, M., et al., Wounding enhances expression of AtSUC3, a sucrose transporter from Arabidopsis sieve elements and sink tissues, Plant Physiol., 2004, vol. 134, pp. 684—693. https://doi.org/10.1104/pp.103.033399

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hackel, A., Schauer, N., Carrari, F., et al., Sucrose transporter LeSUT1 and LeSUT2 inhibition affects tomato fruit development in different ways, Plant J., 2004, vol. 45, pp. 180—192. https://doi.org/10.1111/j.1365-313X.2005.02572.x

Article  CAS  Google Scholar 

Peng, D., Gu, X., Xue, L.-J., et al., Bayesian phylogeny of sucrose transporters: ancient origins, differential expansion and convergent evolution in monocots and dicots, Front. Plant Sci., 2014, vol. 5, no. 615, pp. 1—12. https://doi.org/10.3389/fpls.2014.00615

Article  Google Scholar 

Chen, H.Y., Huh, J.H., Yu, Y.C., et al., The Arabidopsis vacuolar sugar transporter SWEET2 limits carbon sequestration from roots and restricts Pythium infection, Plant J., 2015, vol. 83, pp. 1046—1058. https://doi.org/10.1111/tpj.12948

Article  CAS  PubMed  Google Scholar 

Bock, K.W., Honys, D., Ward, J.M., et al., Integrating membrane transport with male gametophyte development and function through transcriptomics, Plant Physiol., 2006, vol. 140, pp. 1151—1168. https://doi.org/10.1104/pp.105.074708

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guan, Y.F., Huang, X.Y., Zhu, J., et al., RUPTURED POLLEN GRAIN1, a member of the MtN3/saliva gene family, is crucial for exine pattern formation and cell integrity of microspores in Arabidopsis, Plant Physiol., 2008, vol. 147, pp. 852—863. https://doi.org/10.1104/pp.108.118026

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang, L., Wang, L. Zhang, J., et al., Expression and localization of SWEETs in Populus and the effect of SWEET7 overexpression in secondary growth, Tree Physiol., 2020, vol. 41, pp. 882—899. https://doi.org/10.1093/treephys/tpaa145

Article  CAS  Google Scholar 

Slewinski, T.L., Diverse functional roles of monosaccharide transporters and their homologs in vascular plants: a physiological perspective, Mol. Plant, 2011, vol. 4, pp. 641—662. https://doi.org/10.1093/mp/ssr051Li

Article  CAS  PubMed  Google Scholar 

Afoufa-Bastien, D., Medici, A., Jeauffre, J., et al., The Vitis vinifera sugar transporter gene family: phylogenetic overview and macroarray

Comments (0)

No login
gif