Thiruvenkadan, A.K., Prabakaran, R., and Panneerselvam, S., Broiler breeding strategies over the decades: an overview, Worlds Poult. Sci. J., 2011, vol. 67, pp. 309—336. https://doi.org/10.1017/S0043933911000328
Hamoen, F.F., van Kaam, J.B.C.H.M., and Groenen, M.A., et al., Detection of genes on the Z‑chromosome affecting growth and feathering in broilers, Poult. Sci., 2001, vol. 80, pp. 527—534. https://doi.org/10.1093/ps/80.5.527
Article CAS PubMed Google Scholar
Uncu, A.O. and Uncu, A.T., High-throughput simple sequence repeat (SSR) mining saturates the carrot (Daucus carota L.) genome with chromosome-anchored markers, Biotechnol. Biotechnol. Equip., 2020, vol. 34, pp. 1—9. https://doi.org/10.1080/13102818.2019.1701551
Safaa, H., Khaled, R., Isaac, S., et al., Genome-wide in silico characterization, validation, and cross-species transferability of microsatellite markers in Mallard and Muscovy ducks, J. Genet. Eng. Biotechnol., 2023, vol. 21, p. 105. https://doi.org/10.1186/s43141-023-00556-z
Article PubMed PubMed Central Google Scholar
Ashley, M.V. and Dow, B.D., The use of microsatellite analysis in population biology: background, methods and potential applications, Mol. Ecol. Evol. App. Appl., 1994, pp. 185—201. https://doi.org/10.1007/97-3-0348-7527-1_10
Chen, G.H., Wu, X.S., Wang, D.Q., et al., Cluster analysis of 12 Chinese native chicken populations using microsatellite markers, Asian-Australas. J. Anim. Sci., 2004, vol. 17, pp. 1047—1052. https://doi.org/10.5713/ajas.2004.1047
Takezaki, N. and Nei, M., Genetic distances and reconstruction of phylogenetic trees from microsatellite DNA, Genetics, 1996, vol. 144, pp. 389—399. https://doi.org/10.1093/genetics/144.1.389
Article CAS PubMed PubMed Central Google Scholar
Gao YuShi, G.Y., Li HuiFang, L.H., Chen GuoHong, C.G., et al., Construction of microsatellite DNA fingerprinting and analysis of genetic diversity of native chicken breeds, Yunnan Nong Ye Da Xue Xue Bao, 2005, vol. 20, pp. 313—318.
Kaya, M. and Yıldız, MA., Genetic diversity among Turkish native chickens, Denizli and Gerze, estimated by microsatellite markers, Biochem. Genet., 2008, vol. 46, pp. 480—491. https://doi.org/10.1007/s10528-008-9164-8
Article CAS PubMed PubMed Central Google Scholar
Vieira, M.L.C., Santini, L., Diniz, A.L., and Munhoz, C.D.F., Microsatellite markers: what they mean and why they are so useful, Genet. Mol. Biol., 2016, vol. 39, pp. 312—328. https://doi.org/10.1590/1678-4685-GMB-2016-0027
Article PubMed PubMed Central Google Scholar
Helal, M.M. and El-Gendy, E.A., Marker-assisted selection for improving body weight in local chickens in Egypt, J. Agric. Sci., 2023, vol. 161, pp. 135—147. https://doi.org/10.1017/S0021859623000060
Longmire, J.L., Ambrose, R.E., Brown, N.C., et al., Use of sex-linked minisatellite fragments to investigate genetic differentiation and migration of North American populations of the peregrine falcon (Falco peregrinus), DNA Fingerprinting: Approaches and Applications, Burl, T., Doll, G., Jeffreys, A.J., and Wolff, R., Eds., Basel: Birkhäuser, 1991, pp. 217—229. https://doi.org/10.1007/978-3-0348-7312-3_15
Gholizadeh, M. and Mianji, G.R., Use of microsatellite markers in poultry research, Int. J. Poult. Sci., 2007, vol. 6, pp. 145—153. https://doi.org/10.3923/ijps.2007.145.153
Abebe, A.S., Mikko, S., and Johansson, A.M., Genetic diversity of five local Swedish chicken breeds detected by microsatellite markers, PLoS One, 2015, vol. 10, p. e0120580. https://doi.org/10.1371/journal.pone.0120580
Article CAS PubMed PubMed Central Google Scholar
Tóth, G., Gáspári, Z., and Jurka, J., Microsatellites in different eukaryotic genomes: survey and analysis, Genome. Res., 2000, vol. 10, pp. 967—981. https://doi.org/10.1101/gr.10.7.967
Article PubMed PubMed Central Google Scholar
Kumpatla, S.P. and Mukhopadhyay, S., Mining and survey of simple sequence repeats in expressed sequence tags of dicotyledonous species, Genome, 2005, vol. 48, pp. 985—998. https://doi.org/10.1139/g05-060
Article CAS PubMed Google Scholar
Wattanadilokchatkun, P., Panthum, T., Jaisamut, K., et al., Characterization of microsatellite distribution in Siamese fighting fish genome to promote conservation and genetic diversity, Fishes, 2022, vol. 7, p. 251. https://doi.org/10.3390/fishes7050251
Bakhtiarizadeh, M.R., Arefnejad, B., Ebrahimie, E., and Ebrahimi, M., Application of functional genomic information to develop efficient EST-SSRs for the chicken (Gallus gallus), Genet. Mol. Res., 2012, vol. 11, pp. 1558—1574. https://doi.org/10.4238/2012.May.21.12
Article CAS PubMed Google Scholar
Fan, W., Xu, L., Cheng, H., et al., Characterization of duck (Anas platyrhynchos) short tandem repeat variation by population-scale genome re-sequencing, Front. Genet., 2018, vol. 9, p. 520. https://doi.org/10.3389/fgene.2018.00520
Article CAS PubMed PubMed Central Google Scholar
Srivastava, S., Avvaru, A.K., Sowpati, D.T., and Mishra, R.K., Patterns of microsatellite distribution across eukaryotic genomes, BMC Genom., 2019, vol. 20, pp. 1—4. https://doi.org/10.1186/s12864-019-5516-5
Patil, P.G., Singh, N.V., Bohra, A., et al., Comprehensive characterization and validation of chromosome-specific highly polymorphic SSR markers from pomegranate (Punica granatum L.) cv. Tunisia genome, Front. Plant. Sci., 2021, vol. 12, p. 645055. https://doi.org/10.3389/fpls.2021.645055
Article PubMed PubMed Central Google Scholar
Lee, D.J., Maseyesva, B., Westra, W., et al., Microsatellite analysis of recurrent vestibular schwannoma (acoustic neuroma) following stereotactic radiosurgery, Otol. Neurotol., 2006, vol. 27, pp. 213—219. https://doi.org/10.1097/01.mao.0000199753.44191.73
Article CAS PubMed Google Scholar
Ciani, L. and Salinas, P.C., WNTs in the vertebrate nervous system: from patterning to neuronal connectivity, Nat. Rev. Neurosci., 2005, vol. 6, pp. 351—362. https://doi.org/10.1038/nrn1665
Article CAS PubMed Google Scholar
Toledo, E.M., Colombres, M., and Inestrosa, N.C., Wnt signaling in neuroprotection and stem cell differentiation, Prog. Neurobiol., 2008, vol. 86, pp. 281—296. https://doi.org/10.1016/j.pneurobio.2008.08.001
Article CAS PubMed Google Scholar
Tomlinson, R.E., Christiansen, B.A., Giannone, A.A., and Genetos, D.C., The role of nerves in skeletal development, adaptation, and aging, Front. Endocrinol., 2020, vol. 11, p. 646. https://doi.org/10.3389/fendo.2020.00646
Rowland, K., Identification of Biomarkers Associated with Ascites Incidence in Broilers, University of Arkansas, 2013. https://scholarworks.uark.edu/etd/951.
Singh, A.P., Rodrigues, V., and VijayRaghavan, K., Actin reorganization in nerve morphogenesis, eLS, 2010. https://doi.org/10.1002/9780470015902.a0021850
Purro, S.A., Galli, S., and Salinas, P.C., Dysfunction of Wnt signaling and synaptic disassembly in neurodegenerative diseases, J. Mol. Cell. Biol., 2014, vol. 6, pp. 75—80. https://doi.org/10.1093/jmcb/mjt049
Article CAS PubMed PubMed Central Google Scholar
Rosso, S.B. and Inestrosa, N.C., WNT signaling in neuronal maturation and synaptogenesis, Front. Cell. Neurosci., 2013, vol. 7, p. 103. https://doi.org/10.3389/fncel.2013.00103
Article CAS PubMed PubMed Central Google Scholar
Simms, B.A. and Zamponi, GW., Neuronal voltage-gated calcium channels: structure, function, and dysfunction, Neuron., 2014, vol. 82, pp. 24—45. https://doi.org/10.1016/j.neuron.2014.03.016
Comments (0)