Chinta, S.J. and Andersen, J.K., Dopaminergic neurons, Int. J. Biochem. Cell Biol., 2005, vol. 37, no. 5, pp. 942—946. https://doi.org/10.1016/j.biocel.2004.09.009
Article CAS PubMed Google Scholar
Zhou, Z.D., Yi, L.X., Wang, D.Q., et al., Role of dopamine in the pathophysiology of Parkinson’s disease, Transl. Neurodegener., 2023, vol. 12, no. 1, p. 44. https://doi.org/10.1186/s40035023-00378-6
Article CAS PubMed PubMed Central Google Scholar
Coleman, C.R., Pallos, J., Arreola-Bustos, A., et al., Natural variation in age-related dopamine neuron degeneration is glutathione-dependent and linked to life span, bioRxiv, 2024. https://doi.org/10.1101/2024.02.12.580013
Trostnikov, M.V., Veselkina, E.R., Krementsova, A.V., et al., Modulated expression of the protein kinase GSK3 in motor and dopaminergic neurons increases female lifespan in Drosophila melanogaster, Front. Genet., 2020, vol. 11. https://doi.org/10.3389/fgene.2020.00668
Tian, X., Enhancing mask activity in dopaminergic neurons extends lifespan in flies, Aging Cell, 2021, vol. 20, no. 11. https://doi.org/10.1111/acel.13493
Beurel, E., Grieco, S.F., and Jope, R.S., Glycogen synthase kinase-3 (GSK3): regulation, actions, and diseases, Pharmacol. Ther., 2015, vol. 148, pp. 114—131. https://doi.org/10.1016/j.pharmthera.2014.11.016
Article CAS PubMed Google Scholar
Patel, P. and Woodgett, J.R., Glycogen synthase kinase 3: a kinase for all pathways?, Curr. Top. Dev. Biol., 2017, vol. 123, pp. 277—302. https://doi.org/10.1016/bs.ctdb.2016.11.011
Article CAS PubMed Google Scholar
Golpich, M., Amini, E., Hemmati, F., et al., Glycogen synthase kinase-3 beta (GSK-3β) signaling: implications for Parkinson’s disease, Pharmacol. Res., 2015, vol. 97, pp. 16—26. https://doi.org/10.1016/j.phrs.2015.03.010
Article CAS PubMed Google Scholar
Duda, P., Wiśniewski, J., Wójtowicz, T., et al., Targeting GSK3 signaling as a potential therapy of neurodegenerative diseases and aging, Expert. Opin. Ther. Targets, 2018, vol. 22, no. 10, pp. 833—848. https://doi.org/10.1080/14728222.2018.1526925
Article CAS PubMed Google Scholar
Ilouz, R., Kowalsman, N., Eisenstein, M., et al., Identification of novel glycogen synthase kinase-3beta substrate-interacting residues suggests a common mechanism for substrate recognition, J. Biol. Chem., 2006, vol. 281, no. 41, pp. 30621—30630. https://doi.org/10.1074/jbc.M604633200
Article CAS PubMed Google Scholar
García-Yagüe, Á.J., Lastres-Becker, I., Stefanis, L., et al, α-Synuclein induces the GSK-3-mediated phosphorylation and degradation of NURR1 and loss of dopaminergic hallmarks, Mol. Neurobiol., 2021, vol. 58, no. 12, pp. 6697—6711. https://doi.org/10.1007/s12035-021-02558-9
Article CAS PubMed PubMed Central Google Scholar
Bourouis, M., Targeted increase in shaggy activity levels blocks wingless signaling, Genesis, 2002, vol. 34, nos. 1—2, pp. 99—102. https://doi.org/10.1002/gene.10114
Article CAS PubMed Google Scholar
Xie, T., Ho, M.C.W., Liu, Q., et al., A genetic toolkit for dissecting dopamine circuit function in Drosophila, Cell Rep., 2018, vol. 23, no. 2, pp. 652—665. https://doi.org/10.1016/j.celrep.2018.03.068
Article CAS PubMed PubMed Central Google Scholar
Brand, A.H. and Perrimon, N., Targeted gene expression as a means of altering cell fates and generating dominant phenotypes, Development, 1993, vol. 118, no. 2, pp. 401—415. https://doi.org/10.1242/dev.118.2.401
Article CAS PubMed Google Scholar
Luan, H., Diao, F., Scott, R.L., et al., The Drosophila split Gal4 system for neural circuit mapping, Front. Neural Circuits, 2020, vol. 14. https://doi.org/10.3389/fncir.2020.603397
Liu, Q., Liu, S., Kodama, L., et al., Two dopaminergic neurons signal to the dorsal fan-shaped body to promote wakefulness in Drosophila, Curr. Biol., 2012, vol. 22, no. 22, pp. 2114—2123. https://doi.org/10.1016/j.cub.2012.09.008
Article CAS PubMed PubMed Central Google Scholar
Carey, J.R., Longevity: The Biology and Demography of Life Span, Princeton, NT: Princeton Univ. Press, 2003.
Busto, G.U., Cervantes-Sandoval, I., and Davis, R.L., Olfactory learning in Drosophila, Physiology (Bethesda), 2010, vol. 25, no. 66, pp. 338—346. https://doi.org/10.1152/physiol.00026.2010
Article CAS PubMed Google Scholar
Kuo, S.-Y., Wu, C.-L., Hsieh, M.-Y., et al., PPL2ab neurons restore sexual responses in aged Drosophila males through dopamine, Nat. Commun., 2015, vol. 6, no. 1, p. 7490. https://doi.org/10.1038/ncomms8490
Landayan, D., Feldman, D.S., and Wolf, F.W., Satiation state-dependent dopaminergic control of foraging in Drosophila, Sci. Rep., 2018, vol. 8, no. 1, p. 5777. https://doi.org/10.1038/s41598-018-24217-1
Article CAS PubMed PubMed Central Google Scholar
Alekseyenko, O.V., Chan, Y.-B., Li, R., and Kravitz, E.A., Single dopaminergic neurons that modulate aggression in Drosophila, Proc. Natl. Acad. Sci. U.S.A., 2013, vol. 110, no. 15, pp. 6151—6156. https://doi.org/10.1073/pnas.1303446110
Article CAS PubMed PubMed Central Google Scholar
Aso, Y., Herb, A., Ogueta, M., and Siwanowicz, I., Three dopamine pathways induce aversive odor memories with different stability, PLoS Genet., 2012, vol. 8, no. 7. https://doi.org/10.1371/journal.pgen.1002768
Liang, X., Holy, T.E., and Taghert, P.H., Polyphasic circadian neural circuits drive differential activities in multiple downstream rhythmic centers, Curr. Biol., 2023, vol. 33, no. 2, pp. 351—363.е3. https://doi.org/10.1016/j.cub.2022.12.025
Article CAS PubMed PubMed Central Google Scholar
Rezával, C., Nojima, T., Neville, M.C., et al., Sexually dimorphic octopaminergic neurons modulate female postmating behaviors in Drosophila, Curr. Biol., 2014, vol. 24, no. 7, pp. 725—730. https://doi.org/10.1016/j.cub.2013.12.051
Comments (0)