The shaggy Gene Encoding the GSK3 Protein Kinase Controls the Sex-Dependent Effects of Specific Clusters of D. melanogaster Dopaminergic Neurons on Life Span

Chinta, S.J. and Andersen, J.K., Dopaminergic neurons, Int. J. Biochem. Cell Biol., 2005, vol. 37, no. 5, pp. 942—946. https://doi.org/10.1016/j.biocel.2004.09.009

Article  CAS  PubMed  Google Scholar 

Zhou, Z.D., Yi, L.X., Wang, D.Q., et al., Role of dopamine in the pathophysiology of Parkinson’s disease, Transl. Neurodegener., 2023, vol. 12, no. 1, p. 44. https://doi.org/10.1186/s40035023-00378-6

Article  CAS  PubMed  PubMed Central  Google Scholar 

Coleman, C.R., Pallos, J., Arreola-Bustos, A., et al., Natural variation in age-related dopamine neuron degeneration is glutathione-dependent and linked to life span, bioRxiv, 2024. https://doi.org/10.1101/2024.02.12.580013

Trostnikov, M.V., Veselkina, E.R., Krementsova, A.V., et al., Modulated expression of the protein kinase GSK3 in motor and dopaminergic neurons increases female lifespan in Drosophila melanogaster, Front. Genet., 2020, vol. 11. https://doi.org/10.3389/fgene.2020.00668

Tian, X., Enhancing mask activity in dopaminergic neurons extends lifespan in flies, Aging Cell, 2021, vol. 20, no. 11. https://doi.org/10.1111/acel.13493

Beurel, E., Grieco, S.F., and Jope, R.S., Glycogen synthase kinase-3 (GSK3): regulation, actions, and diseases, Pharmacol. Ther., 2015, vol. 148, pp. 114—131. https://doi.org/10.1016/j.pharmthera.2014.11.016

Article  CAS  PubMed  Google Scholar 

Patel, P. and Woodgett, J.R., Glycogen synthase kinase 3: a kinase for all pathways?, Curr. Top. Dev. Biol., 2017, vol. 123, pp. 277—302. https://doi.org/10.1016/bs.ctdb.2016.11.011

Article  CAS  PubMed  Google Scholar 

Golpich, M., Amini, E., Hemmati, F., et al., Glycogen synthase kinase-3 beta (GSK-3β) signaling: implications for Parkinson’s disease, Pharmacol. Res., 2015, vol. 97, pp. 16—26. https://doi.org/10.1016/j.phrs.2015.03.010

Article  CAS  PubMed  Google Scholar 

Duda, P., Wiśniewski, J., Wójtowicz, T., et al., Targeting GSK3 signaling as a potential therapy of neurodegenerative diseases and aging, Expert. Opin. Ther. Targets, 2018, vol. 22, no. 10, pp. 833—848. https://doi.org/10.1080/14728222.2018.1526925

Article  CAS  PubMed  Google Scholar 

Ilouz, R., Kowalsman, N., Eisenstein, M., et al., Identification of novel glycogen synthase kinase-3beta substrate-interacting residues suggests a common mechanism for substrate recognition, J. Biol. Chem., 2006, vol. 281, no. 41, pp. 30621—30630. https://doi.org/10.1074/jbc.M604633200

Article  CAS  PubMed  Google Scholar 

García-Yagüe, Á.J., Lastres-Becker, I., Stefanis, L., et al, α-Synuclein induces the GSK-3-mediated phosphorylation and degradation of NURR1 and loss of dopaminergic hallmarks, Mol. Neurobiol., 2021, vol. 58, no. 12, pp. 6697—6711. https://doi.org/10.1007/s12035-021-02558-9

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bourouis, M., Targeted increase in shaggy activity levels blocks wingless signaling, Genesis, 2002, vol. 34, nos. 1—2, pp. 99—102. https://doi.org/10.1002/gene.10114

Article  CAS  PubMed  Google Scholar 

Xie, T., Ho, M.C.W., Liu, Q., et al., A genetic toolkit for dissecting dopamine circuit function in Drosophila, Cell Rep., 2018, vol. 23, no. 2, pp. 652—665. https://doi.org/10.1016/j.celrep.2018.03.068

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brand, A.H. and Perrimon, N., Targeted gene expression as a means of altering cell fates and generating dominant phenotypes, Development, 1993, vol. 118, no. 2, pp. 401—415. https://doi.org/10.1242/dev.118.2.401

Article  CAS  PubMed  Google Scholar 

Luan, H., Diao, F., Scott, R.L., et al., The Drosophila split Gal4 system for neural circuit mapping, Front. Neural Circuits, 2020, vol. 14. https://doi.org/10.3389/fncir.2020.603397

Liu, Q., Liu, S., Kodama, L., et al., Two dopaminergic neurons signal to the dorsal fan-shaped body to promote wakefulness in Drosophila, Curr. Biol., 2012, vol. 22, no. 22, pp. 2114—2123. https://doi.org/10.1016/j.cub.2012.09.008

Article  CAS  PubMed  PubMed Central  Google Scholar 

Carey, J.R., Longevity: The Biology and Demography of Life Span, Princeton, NT: Princeton Univ. Press, 2003.

Book  Google Scholar 

Busto, G.U., Cervantes-Sandoval, I., and Davis, R.L., Olfactory learning in Drosophila, Physiology (Bethesda), 2010, vol. 25, no. 66, pp. 338—346. https://doi.org/10.1152/physiol.00026.2010

Article  CAS  PubMed  Google Scholar 

Kuo, S.-Y., Wu, C.-L., Hsieh, M.-Y., et al., PPL2ab neurons restore sexual responses in aged Drosophila males through dopamine, Nat. Commun., 2015, vol. 6, no. 1, p. 7490. https://doi.org/10.1038/ncomms8490

Article  PubMed  Google Scholar 

Landayan, D., Feldman, D.S., and Wolf, F.W., Satiation state-dependent dopaminergic control of foraging in Drosophila, Sci. Rep., 2018, vol. 8, no. 1, p. 5777. https://doi.org/10.1038/s41598-018-24217-1

Article  CAS  PubMed  PubMed Central  Google Scholar 

Alekseyenko, O.V., Chan, Y.-B., Li, R., and Kravitz, E.A., Single dopaminergic neurons that modulate aggression in Drosophila, Proc. Natl. Acad. Sci. U.S.A., 2013, vol. 110, no. 15, pp. 6151—6156. https://doi.org/10.1073/pnas.1303446110

Article  CAS  PubMed  PubMed Central  Google Scholar 

Aso, Y., Herb, A., Ogueta, M., and Siwanowicz, I., Three dopamine pathways induce aversive odor memories with different stability, PLoS Genet., 2012, vol. 8, no. 7. https://doi.org/10.1371/journal.pgen.1002768

Liang, X., Holy, T.E., and Taghert, P.H., Polyphasic circadian neural circuits drive differential activities in multiple downstream rhythmic centers, Curr. Biol., 2023, vol. 33, no. 2, pp. 351—363.е3. https://doi.org/10.1016/j.cub.2022.12.025

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rezával, C., Nojima, T., Neville, M.C., et al., Sexually dimorphic octopaminergic neurons modulate female postmating behaviors in Drosophila, Curr. Biol., 2014, vol. 24, no. 7, pp. 725—730. https://doi.org/10.1016/j.cub.2013.12.051

Article  CAS  PubMed  PubMed Central  Google Scholar 

Comments (0)

No login
gif