Kotov, A.A., Faunistic complexes of the Cladocera (Crustacea, Branchiopoda) of Eastern Siberia and Far East of Russia, Zool. Zh., 2016, vol. 95, no. 7, pp. 748–768.
Bekker, E.I., Karabanov, D.P., Galimov, Ya.R., and Kotov, A.A., Barcoding reveals high cryptic diversity in the North Eurasian Moina species (Crustacea: Cladocera), PLoS One, 2016, vol. 11. https://doi.org/10.1371/journal.pone.0161737
Kotov, A.A. and Taylor, D.J., Contrasting endemism in pond-dwelling cyclic parthenogens: the Daphnia curvirostris species group (Crustacea: Cladocera), Sci. Rep., 2019, vol. 9, p. 6812. https://doi.org/10.1038/s41598-019-43281-9
Article CAS PubMed PubMed Central Google Scholar
Korovchinsky, N.M., Kotov, A.A., аnd Boikova, O.S., and Smirnov, N.N., Water Fleas (Crustacea: Cladocera) of North Eurasia, M.: KMK Press, 2021, vol. 2.
Zuykova, E.I., Bochkarev, N.A., and Katokhin, A.V., Identification of the Daphnia species (Crustacea: Cladocera) in the lakes of the Ob and Yenisei river basins: morphological and molecular phylogenetic approaches, Hydrobiologia, 2013, vol. 715, pp. 135–150. https://doi.org/10.1007/s10750-012-1423-3
Zuykova, E.I., Simonov, E.P., Bochkarev, N.A., et al., Contrasting phylogeographic patterns in closely related species of Daphnia longispina group (Crustacea: Cladocera) with focus on north-eastern Eurasia, PLoS One, 2018, vol. 13, no. 11, p. e0207347.
Article PubMed PubMed Central Google Scholar
Zuykova, E.I., Sleptzova, L.P., Bochkarev, N.A., et al., Mitochondrial lineage diversity and phylogeography of Daphnia (Daphnia) (Crustacea: Cladocera) in North-East Russia, Water, 2022, vol. 14. https://doi.org/10.3390/w14121946
Kotov, A.A., Garibian, P.G., Bekker, E.I., et al., A new species group from the Daphnia curvirostris species complex (Cladocera: Anomopoda) from the eastern Palearctic: taxonomy, phylogeny and phylogeography, Zool. J. Linn. Soc., 2021, vol. 191, pp. 772–822. https://doi.org/10.1093/zoolinnean/zlaa046
Gordeeva, N.V., Drits, A.V., and Flint, M.V., Genetic diversity of copepod Limnocalanus macrurus from Russian Arctic Seas, Oceanology, 2019, vol. 59, no. 6, pp. 903–911. https://doi.org/10.1134/S0001437019060067
Hebert, P.D.N. and Hann, B.J., Patterns in the composition of arctic tundra pond microcrustacean communities, Can. J. Fish. Aquat. Sci., 1986, vol. 43, no. 7, pp. 1416–1425. https://doi.org/10.1139/f86-175
Samchyshyna, L., Hansson, L.A., and Christoffer-sen, K.S., Patterns in the distribution of Arctic freshwater zooplankton related to glaciation history, Polar Biol., 2008, vol. 31, pp. 1427–1435. https://doi.org/10.1007/s00300-008-0482-4
Zuykova, E.I., Sleptsova, L.P., Bochkarev, N.A., et al., Comparative phylogeography of vicariant species of the Daphnia longispina s.l. group (Crustacea: Cladocera) in the northern Eurasia, Biol. Vnutrennikh Vod, 2024 (in press).
Hall, T.A., BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT, Nucleic Acids Symp. Ser., 1999, vol. 41, pp. 95—98. https://doi.org/10.14601/Phytopathol_Mediterr-14998ul.29
Katoh, K., Rozewicki, J., and Yamada, K.D., MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization, Briefings Bioinf. 2019, vol. 20, no. 4, pp. 1160–1166. https://doi.org/10.1093/bib/bbx108
Guindon, S. and Gascuel, O., A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood, Syst. Biol., 2003, vol. 52, no. 5, pp. 696—704. https://doi.org/10.1080/10635150390235520
Darriba, D., Taboada, G.L., Doallo, R., et al., jModelTest 2: more models, new heuristics and parallel computing, Nat. Methods, 2012, vol. 9, no. 8, p. 772. https://doi.org/10.1038/nmeth.2109
Tamura, K., Estimation of the number of nucleotide substitutions when there are strong transition—transversion and G + C-content biases, Mol. Biol. Evol., 1992, vol. 9, pp. 678–687. https://doi.org/10.1093/oxfordjournals.molbev.a040752
Article CAS PubMed Google Scholar
Tavaré, S., Some probabilistic and statistical problems in the analysis of DNA sequences: some mathematical questions in biology, DNA Sequence Analysis. Providence. Amer. Math. Soc., 1986, vol. 17, pp. 57–86.
Saitou, N. and Nei, M., The neighbor-joining method: a new method for reconstructing phylogenetic trees, Mol. Biol. Evol., 1987, vol. 4, pp. 6—25. https://doi.org/10.1093/oxfordjournals.molbev.a040454
Kumar, S., Stecher, G., and Tamura, K., MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets, Mol. Biol. Evol., 2016, vol. 33, no. 7, pp. 1870—1874. https://doi.org/10.1093/molbev/msw054
Article CAS PubMed PubMed Central Google Scholar
Ronquist, F. and Huelsenbeck, J.P., MrBayes 3: Bayesian phylogenetic inference under mixed models, Bioinformatics, 2003, vol. 19, no. 12, pp. 1572—1574. https://doi.org/10.1093/bioinformatics/btg180
Article CAS PubMed Google Scholar
Rambaut, A., Drummond, A.J., Xie, D., et al., Posterior summarisation in Bayesian phylogenetics using Tracer 1.7, Syst. Biol., 2018, vol. 67, no. 5, pp. 901—904. https://doi.org/10.1093/sysbio/syy032
Article CAS PubMed PubMed Central Google Scholar
Librado, P. and Rozas, J., DnaSP v5: a software for comprehensive analysis of DNA polymorphism data, Bioinformatics, 2009, vol. 25, pp. 1451—1452. https://doi.org/10.1093/bioinformatics/btp187
Article CAS PubMed Google Scholar
Bandelt, H.J., Forster, P., and Röhl, A., Median-joining networks for inferring intraspecific phylogenies, Mol. Biol. Evol., 1999, vol. 16, pp. 37—48. https://doi.org/10.1093/oxfordjournals.molbev.a026036
Article CAS PubMed Google Scholar
Leigh, J.W. and Bryant, D., PopART: full-feature software for haplotype network construction, Methods Ecol. Evol., 2015, vol. 6, no. 9, pp. 1110—1116. https://doi.org/10.1111/2041-210X.12410
Grant, W.A.S. and Bowen, B.W., Shallow population histories in deep evolutionary lineages of marine fishes: insights from sardines and anchovies and lessons for conservation, J. Hered., 1998, vol. 89, pp. 415–426. https://doi.org/10.1093/jhered/89.5.415
Avise, J.C., Phylogeography: The History and Formation of Species, Cambridge, MA: Harvard Univ. Press, 2000.
Fu, Y.X., Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection, Genetics, 1997, vol. 147, no. 2, pp. 915—925. https://doi.org/10.1093/genetics/147.2.915
Article CAS PubMed PubMed Central Google Scholar
Tajima, F., Statistical methods for testing the neutral mutation hypothesis by DNA polymorphism, Genetics, 1989, vol. 123, pp. 585—595. https://doi.org/10.1093/genetics/123.3.585
Article CAS PubMed PubMed Central Google Scholar
Streletskaya, E.A., List of rotifers, cladocerans and copepods of the water bodies of the Kolyma and Anadyr River basin, in Gidrobiologicheskie issledovaniya vnutrennikh vodoemov Severo-Vostoka SSSR (Hydrobiological Studies of Inland Water Bodies of the North-East of the USSR), Vladivostok: Dalnevost. Nauchn. Tsentr Akad. Nauk SSSR, 1975, pp. 32–59.
Kuz’mina, L.I., Species composition of zooplankton in the rivers of the Arctic part of Yakutia, in Ekologicheskaya, promyshlennaya i energeticheskaya bezopasnost’ (Ecological, Industrial and Energy Security), Sevastopol’, 2018, pp. 680–683.
Frolova, L.A. and Nigamatzyanova, G.R., Structural and functional characteristics of zooplankton communities in thermo-karst lakes of the Island Samoilovskii (Lena River delta, Republic of Sakha (Yakutia)), Uch. Zap. Kazan. Univ., Ser. Estestv. Nauki, 2019, vol. 161, no. 1, pp. 158–171.
Sheveleva, N.G., Mirabdullaev, I.M., Kopyrina, L.I., et al., First information on crustaceans (Crustacea: Cladocera, Copepoda) of the “Pole of Cold” lakes (Yakutia): biology and ecology, Aktual’nye problemy izucheniya rakoobraznykh (Current Issues in Studying Crustaceans) (Proc. Conf.), Borok, 2022, p. 70.
Zuykova, E.I., Bochkarev, N.A., and Kotov, A.A., Specific and genetic structure of the Daphnia longispina s. l. complex (Cladocera, Daphniidae) in water bodies of Southern Siberia, Zool. Zh., 2020, vol. 48, no. 7, pp. 880–891. https://doi.org/10.1134/S1062359021070323
Ishida, S. and Taylor, D.J., Mature habitats associated with genetic divergence despite strong dispersal ability in an arthropod, BMC Evol. Biol., 2007, vol. 7. https://doi.org/10.1186/1471-2148-7-52
Ishida, S. and Taylor, D.J., Quaternary diversification in a sexual Holarctic zooplankter, Daphnia galeata, Mol. Ecol., 2007, vol. 16, pp. 569–582. https://doi.org/10.1111/j.1365-294X.2006.03160.x
Costanzo, K.S. and Taylor, D.J., Rapid ecological isolation and intermediate genetic divergence in lacustrine cyclic parthenogens, BMC Evol. Biol., 2010, vol. 10, p. 166. http://www.biomedcentral.com/1471-2148/10/ 166.
Article PubMed PubMed Central Google Scholar
de Gelas, K. and de Meester, L., Phylogeography of Daphnia magna in Europe, Mol. Ecol., 2005, vol. 14, pp. 753−764. https://doi.org/10.1111/j.1365-294x.2004.02434.x
Article CAS PubMed Google Scholar
Thielsch, A., Brede, N., Petrusek, A., et al., Contribution of cyclic parthenogenesis and colonization history to population structure in Daphnia, Mol. Ecol., 2009, vol. 18, pp. 1616–1628. https://doi.org/10.1111/j.1365-294X.2009.04130.x
Hamrová, E., Mergeay, J., and Petrusek, A., Strong differences in the clonal variation of two Daphnia species from mountain lakes affected by overwintering strategy, BMC Evol. Biol., 2011,
Comments (0)