Phylogeography Patterns and Population Genetics Polymorphism of Daphnia cristata Sars and D. longiremis Sars (Anomopoda: Daphniidae) in Northern Eurasia

Kotov, A.A., Faunistic complexes of the Cladocera (Crustacea, Branchiopoda) of Eastern Siberia and Far East of Russia, Zool. Zh., 2016, vol. 95, no. 7, pp. 748–768.

Google Scholar 

Bekker, E.I., Karabanov, D.P., Galimov, Ya.R., and Kotov, A.A., Barcoding reveals high cryptic diversity in the North Eurasian Moina species (Crustacea: Cladocera), PLoS One, 2016, vol. 11. https://doi.org/10.1371/journal.pone.0161737

Kotov, A.A. and Taylor, D.J., Contrasting endemism in pond-dwelling cyclic parthenogens: the Daphnia curvirostris species group (Crustacea: Cladocera), Sci. Rep., 2019, vol. 9, p. 6812. https://doi.org/10.1038/s41598-019-43281-9

Article  CAS  PubMed  PubMed Central  Google Scholar 

Korovchinsky, N.M., Kotov, A.A., аnd Boikova, O.S., and Smirnov, N.N., Water Fleas (Crustacea: Cladocera) of North Eurasia, M.: KMK Press, 2021, vol. 2.

Google Scholar 

Zuykova, E.I., Bochkarev, N.A., and Katokhin, A.V., Identification of the Daphnia species (Crustacea: Cladocera) in the lakes of the Ob and Yenisei river basins: morphological and molecular phylogenetic approaches, Hydrobiologia, 2013, vol. 715, pp. 135–150. https://doi.org/10.1007/s10750-012-1423-3

Article  CAS  Google Scholar 

Zuykova, E.I., Simonov, E.P., Bochkarev, N.A., et al., Contrasting phylogeographic patterns in closely related species of Daphnia longispina group (Crustacea: Cladocera) with focus on north-eastern Eurasia, PLoS One, 2018, vol. 13, no. 11, p. e0207347.

Article  PubMed  PubMed Central  Google Scholar 

Zuykova, E.I., Sleptzova, L.P., Bochkarev, N.A., et al., Mitochondrial lineage diversity and phylogeography of Daphnia (Daphnia) (Crustacea: Cladocera) in North-East Russia, Water, 2022, vol. 14. https://doi.org/10.3390/w14121946

Kotov, A.A., Garibian, P.G., Bekker, E.I., et al., A new species group from the Daphnia curvirostris species complex (Cladocera: Anomopoda) from the eastern Palearctic: taxonomy, phylogeny and phylogeography, Zool. J. Linn. Soc., 2021, vol. 191, pp. 772–822. https://doi.org/10.1093/zoolinnean/zlaa046

Article  Google Scholar 

Gordeeva, N.V., Drits, A.V., and Flint, M.V., Genetic diversity of copepod Limnocalanus macrurus from Russian Arctic Seas, Oceanology, 2019, vol. 59, no. 6, pp. 903–911. https://doi.org/10.1134/S0001437019060067

Hebert, P.D.N. and Hann, B.J., Patterns in the composition of arctic tundra pond microcrustacean communities, Can. J. Fish. Aquat. Sci., 1986, vol. 43, no. 7, pp. 1416–1425. https://doi.org/10.1139/f86-175

Article  Google Scholar 

Samchyshyna, L., Hansson, L.A., and Christoffer-sen, K.S., Patterns in the distribution of Arctic freshwater zooplankton related to glaciation history, Polar Biol., 2008, vol. 31, pp. 1427–1435. https://doi.org/10.1007/s00300-008-0482-4

Article  Google Scholar 

Zuykova, E.I., Sleptsova, L.P., Bochkarev, N.A., et al., Comparative phylogeography of vicariant species of the Daphnia longispina s.l. group (Crustacea: Cladocera) in the northern Eurasia, Biol. Vnutrennikh Vod, 2024 (in press).

Hall, T.A., BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT, Nucleic Acids Symp. Ser., 1999, vol. 41, pp. 95—98. https://doi.org/10.14601/Phytopathol_Mediterr-14998ul.29

Article  CAS  Google Scholar 

Katoh, K., Rozewicki, J., and Yamada, K.D., MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization, Briefings Bioinf. 2019, vol. 20, no. 4, pp. 1160–1166. https://doi.org/10.1093/bib/bbx108

Article  CAS  Google Scholar 

Guindon, S. and Gascuel, O., A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood, Syst. Biol., 2003, vol. 52, no. 5, pp. 696—704. https://doi.org/10.1080/10635150390235520

Article  PubMed  Google Scholar 

Darriba, D., Taboada, G.L., Doallo, R., et al., jModelTest 2: more models, new heuristics and parallel computing, Nat. Methods, 2012, vol. 9, no. 8, p. 772. https://doi.org/10.1038/nmeth.2109

Tamura, K., Estimation of the number of nucleotide substitutions when there are strong transition—transversion and G + C-content biases, Mol. Biol. Evol., 1992, vol. 9, pp. 678–687. https://doi.org/10.1093/oxfordjournals.molbev.a040752

Article  CAS  PubMed  Google Scholar 

Tavaré, S., Some probabilistic and statistical problems in the analysis of DNA sequences: some mathematical questions in biology, DNA Sequence Analysis. Providence. Amer. Math. Soc., 1986, vol. 17, pp. 57–86.

Google Scholar 

Saitou, N. and Nei, M., The neighbor-joining method: a new method for reconstructing phylogenetic trees, Mol. Biol. Evol., 1987, vol. 4, pp. 6—25. https://doi.org/10.1093/oxfordjournals.molbev.a040454

Article  Google Scholar 

Kumar, S., Stecher, G., and Tamura, K., MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets, Mol. Biol. Evol., 2016, vol. 33, no. 7, pp. 1870—1874. https://doi.org/10.1093/molbev/msw054

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ronquist, F. and Huelsenbeck, J.P., MrBayes 3: Bayesian phylogenetic inference under mixed models, Bioinformatics, 2003, vol. 19, no. 12, pp. 1572—1574. https://doi.org/10.1093/bioinformatics/btg180

Article  CAS  PubMed  Google Scholar 

Rambaut, A., Drummond, A.J., Xie, D., et al., Posterior summarisation in Bayesian phylogenetics using Tracer 1.7, Syst. Biol., 2018, vol. 67, no. 5, pp. 901—904. https://doi.org/10.1093/sysbio/syy032

Article  CAS  PubMed  PubMed Central  Google Scholar 

Librado, P. and Rozas, J., DnaSP v5: a software for comprehensive analysis of DNA polymorphism data, Bioinformatics, 2009, vol. 25, pp. 1451—1452. https://doi.org/10.1093/bioinformatics/btp187

Article  CAS  PubMed  Google Scholar 

Bandelt, H.J., Forster, P., and Röhl, A., Median-joining networks for inferring intraspecific phylogenies, Mol. Biol. Evol., 1999, vol. 16, pp. 37—48. https://doi.org/10.1093/oxfordjournals.molbev.a026036

Article  CAS  PubMed  Google Scholar 

Leigh, J.W. and Bryant, D., PopART: full-feature software for haplotype network construction, Methods Ecol. Evol., 2015, vol. 6, no. 9, pp. 1110—1116. https://doi.org/10.1111/2041-210X.12410

Article  Google Scholar 

Grant, W.A.S. and Bowen, B.W., Shallow population histories in deep evolutionary lineages of marine fishes: insights from sardines and anchovies and lessons for conservation, J. Hered., 1998, vol. 89, pp. 415–426. https://doi.org/10.1093/jhered/89.5.415

Article  Google Scholar 

Avise, J.C., Phylogeography: The History and Formation of Species, Cambridge, MA: Harvard Univ. Press, 2000.

Book  Google Scholar 

Fu, Y.X., Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection, Genetics, 1997, vol. 147, no. 2, pp. 915—925. https://doi.org/10.1093/genetics/147.2.915

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tajima, F., Statistical methods for testing the neutral mutation hypothesis by DNA polymorphism, Genetics, 1989, vol. 123, pp. 585—595. https://doi.org/10.1093/genetics/123.3.585

Article  CAS  PubMed  PubMed Central  Google Scholar 

Streletskaya, E.A., List of rotifers, cladocerans and copepods of the water bodies of the Kolyma and Anadyr River basin, in Gidrobiologicheskie issledovaniya vnutrennikh vodoemov Severo-Vostoka SSSR (Hydrobiological Studies of Inland Water Bodies of the North-East of the USSR), Vladivostok: Dalnevost. Nauchn. Tsentr Akad. Nauk SSSR, 1975, pp. 32–59.

Kuz’mina, L.I., Species composition of zooplankton in the rivers of the Arctic part of Yakutia, in Ekologicheskaya, promyshlennaya i energeticheskaya bezopasnost’ (Ecological, Industrial and Energy Security), Sevastopol’, 2018, pp. 680–683.

Google Scholar 

Frolova, L.A. and Nigamatzyanova, G.R., Structural and functional characteristics of zooplankton communities in thermo-karst lakes of the Island Samoilovskii (Lena River delta, Republic of Sakha (Yakutia)), Uch. Zap. Kazan. Univ., Ser. Estestv. Nauki, 2019, vol. 161, no. 1, pp. 158–171.

Google Scholar 

Sheveleva, N.G., Mirabdullaev, I.M., Kopyrina, L.I., et al., First information on crustaceans (Crustacea: Cladocera, Copepoda) of the “Pole of Cold” lakes (Yakutia): biology and ecology, Aktual’nye problemy izucheniya rakoobraznykh (Current Issues in Studying Crustaceans) (Proc. Conf.), Borok, 2022, p. 70.

Zuykova, E.I., Bochkarev, N.A., and Kotov, A.A., Specific and genetic structure of the Daphnia longispina s. l. complex (Cladocera, Daphniidae) in water bodies of Southern Siberia, Zool. Zh., 2020, vol. 48, no. 7, pp. 880–891. https://doi.org/10.1134/S1062359021070323

Article  Google Scholar 

Ishida, S. and Taylor, D.J., Mature habitats associated with genetic divergence despite strong dispersal ability in an arthropod, BMC Evol. Biol., 2007, vol. 7. https://doi.org/10.1186/1471-2148-7-52

Ishida, S. and Taylor, D.J., Quaternary diversification in a sexual Holarctic zooplankter, Daphnia galeata, Mol. Ecol., 2007, vol. 16, pp. 569–582. https://doi.org/10.1111/j.1365-294X.2006.03160.x

Article  PubMed  Google Scholar 

Costanzo, K.S. and Taylor, D.J., Rapid ecological isolation and intermediate genetic divergence in lacustrine cyclic parthenogens, BMC Evol. Biol., 2010, vol. 10, p. 166. http://www.biomedcentral.com/1471-2148/10/ 166.

Article  PubMed  PubMed Central  Google Scholar 

de Gelas, K. and de Meester, L., Phylogeography of Daphnia magna in Europe, Mol. Ecol., 2005, vol. 14, pp. 753−764. https://doi.org/10.1111/j.1365-294x.2004.02434.x

Article  CAS  PubMed  Google Scholar 

Thielsch, A., Brede, N., Petrusek, A., et al., Contribution of cyclic parthenogenesis and colonization history to population structure in Daphnia, Mol. Ecol., 2009, vol. 18, pp. 1616–1628. https://doi.org/10.1111/j.1365-294X.2009.04130.x

Article  PubMed  Google Scholar 

Hamrová, E., Mergeay, J., and Petrusek, A., Strong differences in the clonal variation of two Daphnia species from mountain lakes affected by overwintering strategy, BMC Evol. Biol., 2011,

Comments (0)

No login
gif