Cysteine-Rich Peptide Genes of the Wheatgrass Thinopyrum elongatum

Dodds, P. and Rathjen, J., Plant immunity: towards an integrated view of plant–pathogen interactions, Nat. Rev. Genet., 2010, vol. 11, pp. 539—548.https://doi.org/10.1038/nrg2812

Article  CAS  PubMed  Google Scholar 

Zou, F., Tan, C., Shinali, T.S., et al., Plant antimicrobial peptides: a comprehensive review of their classification, production, mode of action, functions, applications, and challenges, Food Funct., 2023, vol. 14, no. 12, pp. 5492—5515. https://doi.org/10.1039/d3fo01119d

Article  CAS  PubMed  Google Scholar 

Li, J., Hu, S., Jian, W., et al., Plant antimicrobial peptides: structures, functions, and applications, Bot. Stud., 2021, vol. 62, no. 1, p. 5. https://doi.org/10.1186/s40529-021-00312-x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tam, J.P., Wang, S., Wong, K.H., and Tan, W.L., Antimicrobial peptides from plants, Pharmaceuticals, 2015, vol. 8, no. 4, pp. 711—757. https://doi.org/10.3390/ph8040711

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bolouri Moghaddam, M.R., Vilcinskas, A., and Rahnamaeian, M., Cooperative interaction of antimicrobial peptides with the interrelated immune pathways in plants, Mol. Plant Pathol., 2016, vol. 17, no. 3, pp. 464—471. https://doi.org/10.1111/mpp.12299

Article  CAS  PubMed  Google Scholar 

Campos, M.L., de Souza, C.M., de Oliveira, K.B.S., et al., The role of antimicrobial peptides in plant immunity, J. Exp. Bot., 2018, vol. 69, no. 21, pp. 4997—5011. https://doi.org/10.1093/jxb/ery294

Article  CAS  PubMed  Google Scholar 

Hu, Z., Zhang, H., and Shi, K., Plant peptides in plant defense responses, Plant Signal. Behav., 2018, vol. 13, no. 8. https://doi.org/10.1080/15592324.2018.1475175

Xie, H., Zhao, W., Li, W., et al., Small signaling peptides mediate plant adaptions to abiotic environmental stress, Planta, 2022, vol. 255, no. 4, p. 72. https://doi.org/10.1007/s00425-022-03859-6

Article  CAS  PubMed  Google Scholar 

Marmiroli, N. and Maestri, E., Plant peptides in defense and signaling, Peptides, 2014, vol. 56, pp. 30—44. https://doi.org/10.1016/j.peptides.2014.03.013

Article  CAS  PubMed  Google Scholar 

Yamaguchi, K. and Kawasaki, T., Pathogen- and plant-derived peptides trigger plant immunity, Peptides, 2021, vol. 144. https://doi.org/10.1016/j.peptides.2021.170611

Tavormina, P., De Coninck, B., Nikonorova, N., et al., The plant peptidome: an expanding repertoire of structural features and biological functions, Plant Cell, 2015, vol. 27, no. 8, pp. 2095—2118. https://doi.org/10.1105/tpc.15.00440

Article  CAS  PubMed  PubMed Central  Google Scholar 

Silverstein, K.A., Graham, M.A., Paape, T.D., et al., Genome organization of more than 300 defensin-like genes in Arabidopsis, Plant Physiol., 2005, vol. 138, no. 2, pp. 600—610. https://doi.org/10.1104/pp.105.060079

Article  CAS  PubMed  PubMed Central  Google Scholar 

Silverstein, K.A., Moskal, W.A., Jr., Wu, H.C., et al., Small cysteine-rich peptides resembling antimicrobial peptides have been under-predicted in plants, Plant J., 2007, vol. 51, no. 2, pp. 262—280. https://doi.org/10.1111/j.1365-313X.2007.03136.x

Article  CAS  PubMed  Google Scholar 

Korostyleva, T.V., Shiyan, A.N., and Odintsova, T.I., The genetic resource of Thinopyrum elongatum (Host) D.R. Dewey in breeding improvement of wheat, Russ. J. Genet., 2023, vol. 59, no. 10, pp. 983—990. https://doi.org/10.1134/S1022795423100071

Article  CAS  Google Scholar 

Slezina, M.P., Istomina, E.A., Korostyleva, T.V., et al., Molecular insights into the role of cysteine-rich peptides in induced resistance to Fusarium oxysporum infection in tomato based on transcriptome profiling, Int. J. Mol. Sci., 2021, vol. 22, no. 11.https://doi.org/10.3390/ijms22115741

Teufel, F., Almagro Armenteros, J.J., Johansen, A.R., et al., SignalP 6.0 predicts all five types of signal peptides using protein language models, Nat. Biotechnol., 2022, vol. 40, pp. 1023—1025. https://doi.org/10.1038/s41587-021-01156-3

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gawde, U., Chakraborty, S., Waghu, F.H., et al., CAMPR4: a database of natural and synthetic antimicrobial peptides, Nucleic Acids Res., 2023, vol. 51, pp. D377—D383. https://doi.org/10.1093/nar/gkac933

Article  CAS  PubMed  Google Scholar 

Gasteiger, E., Hoogland, C., Gattiker, A., et al., Protein identification and analysis tools on the ExPASy server, in The Proteomics Protocols Handbook, Walker, J.M., Ed., Humana Press, 2005, pp. 571—607.

Google Scholar 

Eisenhaber, B., Wildpaner, M., Schultz, C.J., et al., Glycosylphosphatidylinositol lipid anchoring of plant proteins: sensitive prediction from sequence- and genome-wide studies for Arabidopsis and rice, Plant Physiol., 2003, vol. 133, pp. 1691—1701. https://doi.org/10.1104/pp.103.023580

Article  CAS  PubMed  PubMed Central  Google Scholar 

Parisi, K., Shafee, T.M.A., Quimbar, P., et al., The evolution, function and mechanisms of action for plant defensins, Semin. Cell Dev. Biol., 2019, vol. 88, pp. 107—118. https://doi.org/10.1016/j.semcdb.2018.02.004

Article  CAS  PubMed  Google Scholar 

Lay, F.T. and Anderson, M.A., Defensins—components of the innate immune system in plants, Curr. Protein Pept. Sci., 2005, vol. 6, no. 1, pp. 85—101. https://doi.org/10.2174/1389203053027575

Article  CAS  PubMed  Google Scholar 

Cools, T.L., Struyfs, C., Cammue, B.P., and Thevissen, K., Antifungal plant defensins: increased insight in their mode of action as a basis for their use to combat fungal infections, Future Microbiol., 2017, vol. 12, pp. 441—454. https://doi.org/10.2217/fmb-2016-0181

Article  CAS  PubMed  Google Scholar 

Sathoff, A.E. and Samac, D.A., Antibacterial activity of plant defensins, Mol. Plant—Microbe Interact., 2019, vol. 32, no. 5, pp. 507—514. https://doi.org/10.1094/MPMI-08-18-0229-CR

Article  CAS  PubMed  Google Scholar 

Mirouze, M., Sels, J., Richard, O., et al., A putative novel role for plant defensins: a defensin from the zinc hyper-accumulating plant, Arabidopsis halleri, confers zinc tolerance, Plant J., 2006, vol. 47, no. 3, pp. 329—342. https://doi.org/10.1111/j.1365-313X.2006.02788.x

Article  CAS  PubMed  Google Scholar 

Sasaki, K., Kuwabara, C., Umeki, N., et al., The cold-induced defensin TAD1 confers resistance against snow mold and Fusarium head blight in transgenic wheat, J. Biotechnol., 2016, vol. 228, pp. 3—7. https://doi.org/10.1016/j.jbiotec.2016.04.015

Article  CAS  PubMed  Google Scholar 

Stotz, H.U., Spence, B., and Wang, Y., A defensin from tomato with dual function in defense and development, Plant Mol. Biol., 2009, vol. 71, nos. 1—2, pp. 131—143. https://doi.org/10.1007/s11103-009-9512-z

Article  CAS  PubMed  Google Scholar 

Odintsova, T.I., Slezina, M.P., Istomina, E.A., et al., Defensin-like peptides in wheat analyzed by whole-transcriptome sequencing: a focus on structural diversity and role in induced resistance, Peer J., 2019, vol. 7. https://doi.org/10.7717/peerj.6125

Slezina, M.P., Istomina, E.A., Kulakovskaya, E.V., et al., The γ-core motif peptides of AMPs from grasses display inhibitory activity against human and plant pathogens, Int. J. Mol. Sci., 2022, vol. 23, no. 15. https://doi.org/10.3390/ijms23158383

Segura, A., Moreno, M., Madueño, F., et al., Snakin-1, a peptide from potato that is active against plant pathogens, Mol. Plant—Microbe Interact., 1999, vol. 12, no. 1, pp. 16—23. https://doi.org/10.1094/MPMI.1999.12.1.16

Article  CAS  PubMed  Google Scholar 

Nahirñak, V., Almasia, N.I., Fernandez, P.V., et al., Potato snakin-1 gene silencing affects cell division, primary metabolism, and cell wall composition, Plant Physiol., 2012, vol. 158, no. 1, pp. 252—263. https://doi.org/10.1104/pp.111.186544

Article  CAS  PubMed  Google Scholar 

Zhang, S., Yang, C., Peng, J., et al., GASA5, a regulator of flowering time and stem growth in Arabidopsis thaliana, Plant Mol. Biol., 2009, vol. 69, pp. 745—759. https://doi.org/10.1007/s11103-009-9452-7

Article  CAS  PubMed  Google Scholar 

Oliveira-Lima, M., Benko-Iseppon, A.M., Neto, J.R.C.F., et al., Snakin: structure, roles and applications of a plant antimicrobial peptide, Curr. Protein Pept. Sci., 2017, vol. 18, no. 4, pp. 368—374. https://doi.org/10.2174/1389203717666160619183140

Comments (0)

No login
gif