Tetracycline Induction of Natural Drug Resistance to Bedaquiline in Mycobacterium smegmatis mc2 155

Larsson, D.G.J. and Flach, C.F., Antibiotic resistance in the environment: 5, Nat. Rev. Microbiol., 2022, vol. 20, no. 5, pp. 257—269. https://doi.org/10.1038/s41579-021-00649-x

Article  CAS  PubMed  Google Scholar 

Hjort, K., Fermér, E., Tang, P.C., and Andersson, D.I., Antibiotic minimal selective concentrations and fitness costs during biofilm and planktonic growth, mBio, 2022, vol. 13, no. 3. https://doi.org/10.1128/mbio.01447-22

Stanton, I.C., Murray, A.K., Zhang, L., et al., Evolution of antibiotic resistance at low antibiotic concentrations including selection below the minimal selective concentration: 1, Commun. Biol., 2020, vol. 3, no. 1, pp. 1—11. https://doi.org/10.1038/s42003-020-01176-w

Article  CAS  Google Scholar 

Swinkels, A.F., Fischer, E.A.J., Korving, L., et al., Defining minimal selective concentrations of amoxicillin, doxycycline and enrofloxacin in broiler-derived cecal fermentations by phenotype, microbiome and resistome, bioRxiv, 2023. https://doi.org/10.1101/2023.11.21.568155

Gullberg, E., Cao, S., Berg, O.G., et al., Selection of resistant bacteria at very low antibiotic concentrations, PLoS Pathog., 2011, vol. 7, no. 7. https://doi.org/10.1371/journal.ppat.1002158

Gullberg, E., Albrecht, L.M., Karlsson, C., et al., Selection of a multidrug resistance plasmid by sublethal levels of antibiotics and heavy metals, mBio, 2014, vol. 5, no. 5. https://doi.org/10.1128/mBio.01918-14

Liu, A., Fong, A., Becket, E., et al., Selective advantage of resistant strains at trace levels of antibiotics: a simple and ultrasensitive color test for detection of antibiotics and genotoxic agents, Antimicrob. Agents Chemother., 2011, vol. 55, no. 3, pp. 1204—1210. https://doi.org/10.1128/AAC.01182-10

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sandegren, L., Selection of antibiotic resistance at very low antibiotic concentrations, Ups. J. Med. Sci., 2014, vol. 119, no. 2, pp. 103—107. https://doi.org/10.3109/03009734.2014.904457

Article  PubMed  PubMed Central  Google Scholar 

Vatlin, A.A., Bekker, O.B., Shur, K.V., et al., Kanamycin and ofloxacin activate the intrinsic resistance to multiple antibiotics in Mycobacterium smegmatis, Biology (Basel), 2023, vol. 12, no. 4. https://doi.org/10.3390/biology12040506

Prozorov, A.A. and Danilenko, V.N., Toxin—antitoxin systems in bacteria: apoptotic tools or metabolic regulators?, Microbiology (Moscow), 2010, vol. 79, no. 2, pp. 129—140. https://doi.org/10.1134/S0026261710020013

Article  CAS  Google Scholar 

Prozorov, A.A., Fedorova, I.A., Bekker, and Danilenko, V.N., The virulence factors of Mycobacterium tuberculosis: genetic control, new conceptions, Russ. J. Genet., 2014, vol. 50, no. 8, pp. 775—797. https://doi.org/10.1134/S1022795414080055

Article  CAS  Google Scholar 

Maslov, D.A., Shur, K.V., Vatlin, A.A., and Danilenko, V.N., MmpS5-MmpL5 transporters provide Mycobacterium smegmatis resistance to imidazo[1,2-b][1,2,4,5]tetrazines, Pathogens, 2020, vol. 9, no. 3. https://doi.org/10.3390/pathogens9030166

Shur, K.V., Frolova, S.G., Akimova, N.I., and Maslov, D.A., Test system for in vitro screening antimycobacterial drug candidates for MmpS5-MmpL5 mediated resistance, Russ. J. Genet., 2021, vol. 57, no. 1, pp. 114—116. https://doi.org/10.1134/S1022795421010154

Article  CAS  Google Scholar 

Yamamoto, K., Nakata, N., Mukai, T., et al., Coexpression of MmpS5 and MmpL5 contributes to both efflux transporter MmpL5 trimerization and drug resistance in Mycobacterium tuberculosis, mSphere, 2021, vol. 6, no. 1. https://doi.org/10.1128/mSphere.00518-20

Shahbaaz, M., Maslov, D.A., Vatlin, A.A., et al., Repurposing based identification of novel inhibitors against MmpS5-MmpL5 efflux pump of Mycobacterium smegmatis: a combined in silico and in vitro study, Biomedicines, 2022, vol. 10, no. 2. https://doi.org/10.3390/biomedicines10020333

Deng, W., Li, C., and Xie, J., The underling mechanism of bacterial TetR/AcrR family transcriptional repressors, Cell Signal., 2013, vol. 25, no. 7, pp. 1608—1613. https://doi.org/10.1016/j.cellsig.2013.04.003

Article  CAS  PubMed  Google Scholar 

Richard, M., Gutiérrez, A.V., Viljoen, A.J., et al., Mechanistic and structural insights into the unique tetr-dependent regulation of a drug efflux pump in Mycobacterium abscessus, Front. Microbiol., 2018, vol. 9. https://doi.org/10.3389/fmicb.2018.00649

Andries, K., Villellas, C., Coeck, N., et al., Acquired resistance of Mycobacterium tuberculosis to bedaquiline, PLoS One, 2014, vol. 9, no. 7. https://doi.org/10.1371/journal.pone.0102135

Hartkoorn, R.C., Uplekar, S., and Cole, S.T., Cross-resistance between clofazimine and bedaquiline through upregulation of MmpL5 in Mycobacterium tuberculosis, Antimicrob. Agents Chemother., 2014, vol. 58, no. 5, pp. 2979—2981. https://doi.org/10.1128/AAC.00037-14

Article  CAS  PubMed  PubMed Central  Google Scholar 

https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/ cfcfr/CFRSearch.cfm?CFRPart=556&showFR=1&-subpartNode=21:6.0.1.1.18.2. Accessed March 6, 2023.

Comments (0)

No login
gif