Larsson, D.G.J. and Flach, C.F., Antibiotic resistance in the environment: 5, Nat. Rev. Microbiol., 2022, vol. 20, no. 5, pp. 257—269. https://doi.org/10.1038/s41579-021-00649-x
Article CAS PubMed Google Scholar
Hjort, K., Fermér, E., Tang, P.C., and Andersson, D.I., Antibiotic minimal selective concentrations and fitness costs during biofilm and planktonic growth, mBio, 2022, vol. 13, no. 3. https://doi.org/10.1128/mbio.01447-22
Stanton, I.C., Murray, A.K., Zhang, L., et al., Evolution of antibiotic resistance at low antibiotic concentrations including selection below the minimal selective concentration: 1, Commun. Biol., 2020, vol. 3, no. 1, pp. 1—11. https://doi.org/10.1038/s42003-020-01176-w
Swinkels, A.F., Fischer, E.A.J., Korving, L., et al., Defining minimal selective concentrations of amoxicillin, doxycycline and enrofloxacin in broiler-derived cecal fermentations by phenotype, microbiome and resistome, bioRxiv, 2023. https://doi.org/10.1101/2023.11.21.568155
Gullberg, E., Cao, S., Berg, O.G., et al., Selection of resistant bacteria at very low antibiotic concentrations, PLoS Pathog., 2011, vol. 7, no. 7. https://doi.org/10.1371/journal.ppat.1002158
Gullberg, E., Albrecht, L.M., Karlsson, C., et al., Selection of a multidrug resistance plasmid by sublethal levels of antibiotics and heavy metals, mBio, 2014, vol. 5, no. 5. https://doi.org/10.1128/mBio.01918-14
Liu, A., Fong, A., Becket, E., et al., Selective advantage of resistant strains at trace levels of antibiotics: a simple and ultrasensitive color test for detection of antibiotics and genotoxic agents, Antimicrob. Agents Chemother., 2011, vol. 55, no. 3, pp. 1204—1210. https://doi.org/10.1128/AAC.01182-10
Article CAS PubMed PubMed Central Google Scholar
Sandegren, L., Selection of antibiotic resistance at very low antibiotic concentrations, Ups. J. Med. Sci., 2014, vol. 119, no. 2, pp. 103—107. https://doi.org/10.3109/03009734.2014.904457
Article PubMed PubMed Central Google Scholar
Vatlin, A.A., Bekker, O.B., Shur, K.V., et al., Kanamycin and ofloxacin activate the intrinsic resistance to multiple antibiotics in Mycobacterium smegmatis, Biology (Basel), 2023, vol. 12, no. 4. https://doi.org/10.3390/biology12040506
Prozorov, A.A. and Danilenko, V.N., Toxin—antitoxin systems in bacteria: apoptotic tools or metabolic regulators?, Microbiology (Moscow), 2010, vol. 79, no. 2, pp. 129—140. https://doi.org/10.1134/S0026261710020013
Prozorov, A.A., Fedorova, I.A., Bekker, and Danilenko, V.N., The virulence factors of Mycobacterium tuberculosis: genetic control, new conceptions, Russ. J. Genet., 2014, vol. 50, no. 8, pp. 775—797. https://doi.org/10.1134/S1022795414080055
Maslov, D.A., Shur, K.V., Vatlin, A.A., and Danilenko, V.N., MmpS5-MmpL5 transporters provide Mycobacterium smegmatis resistance to imidazo[1,2-b][1,2,4,5]tetrazines, Pathogens, 2020, vol. 9, no. 3. https://doi.org/10.3390/pathogens9030166
Shur, K.V., Frolova, S.G., Akimova, N.I., and Maslov, D.A., Test system for in vitro screening antimycobacterial drug candidates for MmpS5-MmpL5 mediated resistance, Russ. J. Genet., 2021, vol. 57, no. 1, pp. 114—116. https://doi.org/10.1134/S1022795421010154
Yamamoto, K., Nakata, N., Mukai, T., et al., Coexpression of MmpS5 and MmpL5 contributes to both efflux transporter MmpL5 trimerization and drug resistance in Mycobacterium tuberculosis, mSphere, 2021, vol. 6, no. 1. https://doi.org/10.1128/mSphere.00518-20
Shahbaaz, M., Maslov, D.A., Vatlin, A.A., et al., Repurposing based identification of novel inhibitors against MmpS5-MmpL5 efflux pump of Mycobacterium smegmatis: a combined in silico and in vitro study, Biomedicines, 2022, vol. 10, no. 2. https://doi.org/10.3390/biomedicines10020333
Deng, W., Li, C., and Xie, J., The underling mechanism of bacterial TetR/AcrR family transcriptional repressors, Cell Signal., 2013, vol. 25, no. 7, pp. 1608—1613. https://doi.org/10.1016/j.cellsig.2013.04.003
Article CAS PubMed Google Scholar
Richard, M., Gutiérrez, A.V., Viljoen, A.J., et al., Mechanistic and structural insights into the unique tetr-dependent regulation of a drug efflux pump in Mycobacterium abscessus, Front. Microbiol., 2018, vol. 9. https://doi.org/10.3389/fmicb.2018.00649
Andries, K., Villellas, C., Coeck, N., et al., Acquired resistance of Mycobacterium tuberculosis to bedaquiline, PLoS One, 2014, vol. 9, no. 7. https://doi.org/10.1371/journal.pone.0102135
Hartkoorn, R.C., Uplekar, S., and Cole, S.T., Cross-resistance between clofazimine and bedaquiline through upregulation of MmpL5 in Mycobacterium tuberculosis, Antimicrob. Agents Chemother., 2014, vol. 58, no. 5, pp. 2979—2981. https://doi.org/10.1128/AAC.00037-14
Article CAS PubMed PubMed Central Google Scholar
https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/ cfcfr/CFRSearch.cfm?CFRPart=556&showFR=1&-subpartNode=21:6.0.1.1.18.2. Accessed March 6, 2023.
Comments (0)