Epigenetic Mechanisms of the Influence of Physical Activity on the Development of Atherosclerosis

Herrington, W., Lacey, B., Sherliker, P., et al., Epidemiology of atherosclerosis and the potential to reduce the global burden of atherothrombotic disease, Circ. Res., 2016, vol. 118, pp. 535—546. https://doi.org/10.1161/CIRCRESAHA.115.307611

Article  CAS  PubMed  Google Scholar 

Wang, J.C. and Bennett, M., Aging and atherosclerosis: mechanisms, functional consequences, and potential therapeutics for cellular senescence, Circ. Res., 2012, vol. 111, pp. 245—259. https://doi.org/10.1161/CIRCRESAHA.111.261388

Article  CAS  PubMed  Google Scholar 

Franceschi, C., Bonafe, M., Valensin, S., et al., Inflamm-agning: an evolutionary perspective on immunosenescence, Ann. N.Y. Acad. Sci., 2000, vol. 908, pp. 244—254. https://doi.org/10.1111/j.1749-6632.2000.tb06651.x

Article  CAS  PubMed  Google Scholar 

Menghini, R., Stohr, R., and Federici, M., MicroRNAs in vascular aging and atherosclerosis, Ageing Res. Rev., 2014, vol. 17, pp. 68—78. https://doi.org/10.1016/j.arr.2014.03.005

Article  CAS  PubMed  Google Scholar 

de Yebenes, V.G., Briones, A.M., Martos-Folgado, I., et al., Aging-associated miR-217 aggravates atherosclerosis and promotes cardiovascular dysfunction, Arterioscler. Thromb. Vasc. Biol., 2020, vol. 40, pp. 2408—2424. https://doi.org/10.1161/ATVBAHA.120.314333

Article  CAS  PubMed  PubMed Central  Google Scholar 

Incalcaterra, E., Accardi, G., Balistreri, C.R., et al., Pro-inflammatory genetic markers of atherosclerosis, Curr. Atheroscler. Rep., 2013, vol. 15. https://doi.org/10.1007/s11883-013-0329-5

Wassel, C.L., Lamina, C., Nambi, V., et al., Genetic determinants of the ankle-brachial index: a meta-analysis of a cardiovascular candidate gene 50K SNP panel in the candidate gene association resource (CARe) consortium, Atherosclerosis, 2012, vol. 222, pp. 138—147. https://doi.org/10.1016/j.atherosclerosis.2012.01.039

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mishra, A., Malik, R., Hachiya, T., et al., Stroke genetics informs drug discovery and risk prediction across ancestries, Nature, 2022, vol. 611, pp. 115—123. https://doi.org/10.1038/s41586-022-05165-3

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nikpay, M., Goel, A., Won, H.H., et al., A comprehensive 1000 genomes-based genome-wide association meta-analysis of coronary artery disease, Nat. Genet., 2015, vol. 47, pp. 1121—1130. https://doi.org/10.1038/ng.3396

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xu, S., Pelisek, J., and Jin, Z.G., Atherosclerosis is an epigenetic disease, Trends Endocrinol. Metab., 2018, vol. 29, pp. 739—742. https://doi.org/10.1016/j.tem.2018.04.007

Article  CAS  PubMed  PubMed Central  Google Scholar 

Deng, S., Wang, H., Jia, C., et al., MicroRNA-146a induces lineage-negative bone marrow cell apoptosis and senescence by targeting polo-like kinase 2 expression, Arterioscler. Thromb. Vasc. Biol., 2017, vol. 37, pp. 280—290.

Article  CAS  PubMed  Google Scholar 

Nowak, W.N., Deng, J., Ruan, X.Z., et al., Reactive oxygen species generation and atherosclerosis, Arterioscler. Thromb. Vasc. Biol., 2017, vol. 37, pp. e41—e52.

Article  CAS  PubMed  Google Scholar 

Bennett, M.R., Sinha, S., and Owens, G.K., Vascular smooth muscle cells in atherosclerosis, Circ. Res., 2016, vol. 118, pp. 692—702. https://doi.org/10.1161/CIRCRESAHA.115.306361

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen, C., Yan, Y., and Liu, X., MicroRNA-612 is downregulated by platelet-derived growth factor-BB treatment and has inhibitory effects on vascular smooth muscle cell proliferation and migration via directly targeting AKT2, Exp. Ther. Med., 2018, vol. 15, pp. 159—165. https://doi.org/10.3892/etm.2017.5428

Article  CAS  PubMed  Google Scholar 

Lu, Y., Thavarajah, T., Gu, W., et al., Impact of miRNA in atherosclerosis, Arterioscler. Thromb. Vasc. Biol., 2018, vol. 38, pp. e159—e170. https://doi.org/10.1161/ATVBAHA.118.310227

Article  CAS  PubMed  PubMed Central  Google Scholar 

Arora, M., Kaul, D., and Sharma, Y.P., Human coronary heart disease: importance of blood cellular miR-2909 RNomics, Mol. Cell. Biochem., 2014, vol. 392, pp. 49—63. https://doi.org/10.1007/s11010-014-2017-3

Article  CAS  PubMed  Google Scholar 

Cui, Y., Wang, L., Huang, Y., et al., Identification of key genes in atherosclerosis by combined DNA methylation and miRNA expression analyses, Anatol. J. Cardiol., 2022, vol. 26, pp. 818—826. https://doi.org/10.5152/AnatolJCardiol.2022.1723

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chalertpet, K., Pin-On, P., Aporntewan, C., et al., Argonaute 4 as an effector protein in RNA-directed DNA methylation in human cells, Front. Genet., 2019, vol. 10. https://doi.org/10.3389/fgene.2019.00645

Ouimet, M., Ediriweera, H., Afonso, M.S., et al., MicroRNA-33 regulates macrophage autophagy in atherosclerosis, Arterioscler. Thromb. Vasc. Biol., 2017, vol. 37, pp. 1058—1067.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang, H., Sun, Y., Li, Q., et al., Diverse epigenetic regulations of macrophages in atherosclerosis, Front. Cardiovasc. Med., 2022, vol. 9. https://doi.org/10.3389/fcvm.2022.868788

Sharma, A.R., Sharma, G., Bhattacharya, M., et al., Circulating miRNA in atherosclerosis: a clinical biomarker and early diagnostic tool, Curr. Mol. Med., 2022, vol. 22, pp. 250—262. https://doi.org/10.2174/1566524021666210315124438

Article  CAS  PubMed  Google Scholar 

Gorbunova, V., Seluanov, A., Mita, P., et al., The role of retrotransposable elements in ageing and age-associated diseases, Nature, 2021, vol. 596, pp. 43—53. https://doi.org/10.1038/s41586-021-03542-y

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wei, G., Qin, S., Li, W., et al., MDTE DB: a database for microRNAs derived from transposable element, IEEE/ACM Trans. Comput. Biol. Bioinf., 2016, vol. 13, pp. 1155—1160. https://doi.org/10.1109/TCBB.2015.2511767

Article  Google Scholar 

Autio, A., Nevalainen, T., Mishra, B.H., et al., Effect of aging on the transcriptomic changes associated with the expression of the HERV-K (HML-2) provirus at 1q22, Immun. Ageing, 2020, vol. 17, p. 11. https://doi.org/10.1186/s12979-020-00182-0

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cardelli, M., The epigenetic alterations of endogenous retroelements in aging, Mech. Ageing Dev., 2018, vol. 174, pp. 30—46. https://doi.org/10.1016/j.mad.2018.02.002

Article  CAS  PubMed  Google Scholar 

Noz, M.P., Hartman, Y.A.W., Hopman, M.T.E., et al., Sixteen-week physical activity intervention in subjects with increased cardiometabolic risk shifts innate immune function towards a less proinflammatory state, J. Am. Heart. Assoc., 2019, vol. 8. https://doi.org/10.1161/JAHA.119.013764

Laufs, U., Wassmann, S., Czech, T., et al., Physical inactivity increases oxidative stress, endothelial dysfunction, and atherosclerosis, Arterioscler. Thromb. Vasc. Biol., 2005, vol. 25, pp. 809—814.

Article  CAS  PubMed  Google Scholar 

Starkie, R., Ostrowski, S.R., Jauffred, S., et al., Exercise and IL-6 infusion inhibit endotoxin induced TNF-alpha production in humans, FASEB J., 2003, vol. 17, pp. 884—886.

Article  CAS  PubMed  Google Scholar 

Kohut, M.L., McCann, D.A., Russell, D.W., et al., Aerobic exercise, but not flexibility/resistance exercise, reduces serum IL-18, CRP, and IL-6 independent of beta-blockers, BMI, and psychosocial factors in older adults, Brain Behav. Immun., 2006, vol. 20, pp. 201—209.

Article  CAS  PubMed  Google Scholar 

Pinto, P.R., Rocco, D.D., Okuda, L.S., et al., Aerobic exercise training enhances the in vivo cholesterol trafficking from macrophages to the liver independently of changes in the expression of genes involved in lipid flux in macrophages and aorta, Lipids Health Dis., 2015, vol. 14, p. 109.

Article  PubMed  PubMed Central 

Comments (0)

No login
gif