Herrington, W., Lacey, B., Sherliker, P., et al., Epidemiology of atherosclerosis and the potential to reduce the global burden of atherothrombotic disease, Circ. Res., 2016, vol. 118, pp. 535—546. https://doi.org/10.1161/CIRCRESAHA.115.307611
Article CAS PubMed Google Scholar
Wang, J.C. and Bennett, M., Aging and atherosclerosis: mechanisms, functional consequences, and potential therapeutics for cellular senescence, Circ. Res., 2012, vol. 111, pp. 245—259. https://doi.org/10.1161/CIRCRESAHA.111.261388
Article CAS PubMed Google Scholar
Franceschi, C., Bonafe, M., Valensin, S., et al., Inflamm-agning: an evolutionary perspective on immunosenescence, Ann. N.Y. Acad. Sci., 2000, vol. 908, pp. 244—254. https://doi.org/10.1111/j.1749-6632.2000.tb06651.x
Article CAS PubMed Google Scholar
Menghini, R., Stohr, R., and Federici, M., MicroRNAs in vascular aging and atherosclerosis, Ageing Res. Rev., 2014, vol. 17, pp. 68—78. https://doi.org/10.1016/j.arr.2014.03.005
Article CAS PubMed Google Scholar
de Yebenes, V.G., Briones, A.M., Martos-Folgado, I., et al., Aging-associated miR-217 aggravates atherosclerosis and promotes cardiovascular dysfunction, Arterioscler. Thromb. Vasc. Biol., 2020, vol. 40, pp. 2408—2424. https://doi.org/10.1161/ATVBAHA.120.314333
Article CAS PubMed PubMed Central Google Scholar
Incalcaterra, E., Accardi, G., Balistreri, C.R., et al., Pro-inflammatory genetic markers of atherosclerosis, Curr. Atheroscler. Rep., 2013, vol. 15. https://doi.org/10.1007/s11883-013-0329-5
Wassel, C.L., Lamina, C., Nambi, V., et al., Genetic determinants of the ankle-brachial index: a meta-analysis of a cardiovascular candidate gene 50K SNP panel in the candidate gene association resource (CARe) consortium, Atherosclerosis, 2012, vol. 222, pp. 138—147. https://doi.org/10.1016/j.atherosclerosis.2012.01.039
Article CAS PubMed PubMed Central Google Scholar
Mishra, A., Malik, R., Hachiya, T., et al., Stroke genetics informs drug discovery and risk prediction across ancestries, Nature, 2022, vol. 611, pp. 115—123. https://doi.org/10.1038/s41586-022-05165-3
Article CAS PubMed PubMed Central Google Scholar
Nikpay, M., Goel, A., Won, H.H., et al., A comprehensive 1000 genomes-based genome-wide association meta-analysis of coronary artery disease, Nat. Genet., 2015, vol. 47, pp. 1121—1130. https://doi.org/10.1038/ng.3396
Article CAS PubMed PubMed Central Google Scholar
Xu, S., Pelisek, J., and Jin, Z.G., Atherosclerosis is an epigenetic disease, Trends Endocrinol. Metab., 2018, vol. 29, pp. 739—742. https://doi.org/10.1016/j.tem.2018.04.007
Article CAS PubMed PubMed Central Google Scholar
Deng, S., Wang, H., Jia, C., et al., MicroRNA-146a induces lineage-negative bone marrow cell apoptosis and senescence by targeting polo-like kinase 2 expression, Arterioscler. Thromb. Vasc. Biol., 2017, vol. 37, pp. 280—290.
Article CAS PubMed Google Scholar
Nowak, W.N., Deng, J., Ruan, X.Z., et al., Reactive oxygen species generation and atherosclerosis, Arterioscler. Thromb. Vasc. Biol., 2017, vol. 37, pp. e41—e52.
Article CAS PubMed Google Scholar
Bennett, M.R., Sinha, S., and Owens, G.K., Vascular smooth muscle cells in atherosclerosis, Circ. Res., 2016, vol. 118, pp. 692—702. https://doi.org/10.1161/CIRCRESAHA.115.306361
Article CAS PubMed PubMed Central Google Scholar
Chen, C., Yan, Y., and Liu, X., MicroRNA-612 is downregulated by platelet-derived growth factor-BB treatment and has inhibitory effects on vascular smooth muscle cell proliferation and migration via directly targeting AKT2, Exp. Ther. Med., 2018, vol. 15, pp. 159—165. https://doi.org/10.3892/etm.2017.5428
Article CAS PubMed Google Scholar
Lu, Y., Thavarajah, T., Gu, W., et al., Impact of miRNA in atherosclerosis, Arterioscler. Thromb. Vasc. Biol., 2018, vol. 38, pp. e159—e170. https://doi.org/10.1161/ATVBAHA.118.310227
Article CAS PubMed PubMed Central Google Scholar
Arora, M., Kaul, D., and Sharma, Y.P., Human coronary heart disease: importance of blood cellular miR-2909 RNomics, Mol. Cell. Biochem., 2014, vol. 392, pp. 49—63. https://doi.org/10.1007/s11010-014-2017-3
Article CAS PubMed Google Scholar
Cui, Y., Wang, L., Huang, Y., et al., Identification of key genes in atherosclerosis by combined DNA methylation and miRNA expression analyses, Anatol. J. Cardiol., 2022, vol. 26, pp. 818—826. https://doi.org/10.5152/AnatolJCardiol.2022.1723
Article CAS PubMed PubMed Central Google Scholar
Chalertpet, K., Pin-On, P., Aporntewan, C., et al., Argonaute 4 as an effector protein in RNA-directed DNA methylation in human cells, Front. Genet., 2019, vol. 10. https://doi.org/10.3389/fgene.2019.00645
Ouimet, M., Ediriweera, H., Afonso, M.S., et al., MicroRNA-33 regulates macrophage autophagy in atherosclerosis, Arterioscler. Thromb. Vasc. Biol., 2017, vol. 37, pp. 1058—1067.
Article CAS PubMed PubMed Central Google Scholar
Yang, H., Sun, Y., Li, Q., et al., Diverse epigenetic regulations of macrophages in atherosclerosis, Front. Cardiovasc. Med., 2022, vol. 9. https://doi.org/10.3389/fcvm.2022.868788
Sharma, A.R., Sharma, G., Bhattacharya, M., et al., Circulating miRNA in atherosclerosis: a clinical biomarker and early diagnostic tool, Curr. Mol. Med., 2022, vol. 22, pp. 250—262. https://doi.org/10.2174/1566524021666210315124438
Article CAS PubMed Google Scholar
Gorbunova, V., Seluanov, A., Mita, P., et al., The role of retrotransposable elements in ageing and age-associated diseases, Nature, 2021, vol. 596, pp. 43—53. https://doi.org/10.1038/s41586-021-03542-y
Article CAS PubMed PubMed Central Google Scholar
Wei, G., Qin, S., Li, W., et al., MDTE DB: a database for microRNAs derived from transposable element, IEEE/ACM Trans. Comput. Biol. Bioinf., 2016, vol. 13, pp. 1155—1160. https://doi.org/10.1109/TCBB.2015.2511767
Autio, A., Nevalainen, T., Mishra, B.H., et al., Effect of aging on the transcriptomic changes associated with the expression of the HERV-K (HML-2) provirus at 1q22, Immun. Ageing, 2020, vol. 17, p. 11. https://doi.org/10.1186/s12979-020-00182-0
Article CAS PubMed PubMed Central Google Scholar
Cardelli, M., The epigenetic alterations of endogenous retroelements in aging, Mech. Ageing Dev., 2018, vol. 174, pp. 30—46. https://doi.org/10.1016/j.mad.2018.02.002
Article CAS PubMed Google Scholar
Noz, M.P., Hartman, Y.A.W., Hopman, M.T.E., et al., Sixteen-week physical activity intervention in subjects with increased cardiometabolic risk shifts innate immune function towards a less proinflammatory state, J. Am. Heart. Assoc., 2019, vol. 8. https://doi.org/10.1161/JAHA.119.013764
Laufs, U., Wassmann, S., Czech, T., et al., Physical inactivity increases oxidative stress, endothelial dysfunction, and atherosclerosis, Arterioscler. Thromb. Vasc. Biol., 2005, vol. 25, pp. 809—814.
Article CAS PubMed Google Scholar
Starkie, R., Ostrowski, S.R., Jauffred, S., et al., Exercise and IL-6 infusion inhibit endotoxin induced TNF-alpha production in humans, FASEB J., 2003, vol. 17, pp. 884—886.
Article CAS PubMed Google Scholar
Kohut, M.L., McCann, D.A., Russell, D.W., et al., Aerobic exercise, but not flexibility/resistance exercise, reduces serum IL-18, CRP, and IL-6 independent of beta-blockers, BMI, and psychosocial factors in older adults, Brain Behav. Immun., 2006, vol. 20, pp. 201—209.
Article CAS PubMed Google Scholar
Pinto, P.R., Rocco, D.D., Okuda, L.S., et al., Aerobic exercise training enhances the in vivo cholesterol trafficking from macrophages to the liver independently of changes in the expression of genes involved in lipid flux in macrophages and aorta, Lipids Health Dis., 2015, vol. 14, p. 109.
Comments (0)