Boison, D. and Jarvis, M.F., Adenosine kinase a key regulator of purinergic physiology, Biochem. Pharmacol., 2021, vol. 187, p. 114321. https://doi.org/10.1016/j.bcp.2020.114321
Article CAS PubMed Google Scholar
Kiese, K., Jablonski, J., Boison, D., and Kobow, K., Dynamic regulation of the adenosine kinase gene during early postnatal brain development and maturation, Front. Mol. Neurosci., 2016, vol. 9, p. 99. https://doi.org/10.3389/fnmol.2016.00099
Article CAS PubMed PubMed Central Google Scholar
Bjursell, M.K., Blom, H.J., Cayuela, J.A., et al., Adenosine kinase deficiency disrupts the methionine cycle and causes hypermethioninemia, encephalopathy, and abnormal liver function, Am. J. Hum. Genet., 2011, vol. 89, no. 4, pp. 507—515. https://doi.org/10.1016/j.ajhg.2011.09.004
Article CAS PubMed PubMed Central Google Scholar
Boison, D., Adenosine kinase exploitation for therapeutic gain, Pharmacol. Rev., 2013, vol. 65, no. 3, pp. 906—943. https://doi.org/10.1124/pr.112.006361
Article CAS PubMed PubMed Central Google Scholar
Sandau, U.S., Colino-Oliveira, M., Jones, A., et al., Adenosine kinase deficiency in the brain results in maladaptive synaptic plasticity, J. Neurosci., 2016, vol. 36, no. 48, pp. 12117—12128. https://doi.org/10.1523/JNEUROSCI.2146-16.2016
Article CAS PubMed PubMed Central Google Scholar
Staufner, C., Lindner, M., Dionisi-Vici, C., et al., Adenosine kinase deficiency: expanding the clinical spectrum and evaluating therapeutic options, J. Inherit. Metab. Dis., 2016, vol. 39, no. 2, pp. 273—283. https://doi.org/10.1007/s10545-015-9904-y
Article CAS PubMed Google Scholar
Park, J. and Gupta, R.S., Adenosine kinase and ribokinase—the RK family of proteins, Cell. Mol. Life Sci., 2008, vol. 65, no. 18, pp. 2875—2896. https://doi.org/10.1007/s00018-008-8123-1
Article CAS PubMed PubMed Central Google Scholar
Cui, X.A., Singh, B., Park, J., and Gupta, R.S., Subcellular localization of adenosine kinase in mammalian cells: the long isoform of AdK is localized in the nucleus, Biochem. Biophys. Res. Commun., 2009, vol. 388, no. 1, pp. 46—50. https://doi.org/10.1016/j.bbrc.2009.07.106
Article CAS PubMed Google Scholar
Yazar, M. and Özbek, P., In silico tools and approaches for the prediction of functional and structural effects of single-nucleotide polymorphisms on proteins: an expert review, OMICS J. Integr. Biol., 2021, vol. 25, no. 1, pp. 23—37. https://doi.org/10.1089/omi.2020.0141
Wu, J. and Jiang, R., Prediction of deleterious nonsynonymous single-nucleotide polymorphism for human diseases, Sci. World J., 2013, vol. 2013, p. 675851. https://doi.org/10.1155/2013/675851
Sherry, S.T., Ward, M., and Sirotkin, K., dbSNP-database for single nucleotide polymorphisms and other classes of minor genetic variation, Genome Res., 1999, vol. 9, no. 8, pp. 677—679. https://doi.org/10.1101/gr.9.8.677
Article CAS PubMed Google Scholar
The UniProt Consortium, UniProt: the universal protein knowledgebase in 2021, Nucleic Acids Res., 2021, vol. 49, no. D1, pp. D480—D489. https://doi.org/10.1093/nar/gkaa1100
Ng, P.C. and Henikoff, S., SIFT: predicting amino acid changes that affect protein function, Nucleic Acids Res., 2003, vol. 31, no. 13, pp. 3812—3814. https://doi.org/10.1093/nar/gkg509
Article CAS PubMed PubMed Central Google Scholar
Capriotti, E., Calabrese, R., and Casadio, R., Predicting the insurgence of human genetic diseases associated to single point protein mutations with support vector machines and evolutionary information, Bioinform., 2006, vol. 22, no. 22, pp. 2729—2734. https://doi.org/10.1093/bioinformatics/btl423
Capriotti, E., Calabrese, R., Fariselli, P., et al., WS-SNPs&GO: a web server for predicting the deleterious effect of human protein variants using functional annotation, BMC Genom., 2013, vol. 14, no. S6. https://doi.org/10.1186/1471-2164-14-S3-S6
Yates, C.M., Filippis, I., Kelley, L.A., and Sternberg, M.J.E., SuSPect: Enhanced prediction of single amino acid variant (SAV) phenotype using network features, J. Mol. Biol., 2014, vol. 426, no. 14, pp. 2692—2701. https://doi.org/10.1016/j.jmb.2014.04.026
Article CAS PubMed PubMed Central Google Scholar
Hecht, M., Bromberg, Y., and Rost, B., Better prediction of functional effects for sequence variants, BMC Genom., 2015, vol. 16, no. 8. https://doi.org/10.1186/1471-2164-16-S8-S1
Shihab, H.A., Gough, J., Cooper, D.N. et al., Predicting the functional, molecular, and phenotypic consequences of amino acid substitutions using hidden Markov models, Hum. Mutat., 2013, vol. 34, no. 1, pp. 57—65. https://doi.org/10.1002/humu.22225
Article CAS PubMed Google Scholar
Adzhubei, I., Jordan, D.M., and Sunyaev, S.R., Predicting functional effect of human missense mutations using PolyPhen-2, Curr. Protoc. Hum. Genet., 2013, chapter 7, unit 7.20. https://doi.org/10.1002/0471142905.hg0720s76.
Capriotti, E., Fariselli, P., and Casadio, R., I-Mutant2.0: predicting stability changes upon mutation from the protein sequence or structure, Nucleic Acids Res., 2005, vol. 33, Web Server issue, pp. W306—W310. https://doi.org/10.1093/nar/gki375
Cheng, J., Randall, A., and Baldi, P., Prediction of protein stability changes for single-site mutations using support vector machines, Proteins, 2006, vol. 62, no. 4, pp. 1125—1132. https://doi.org/1002/prot.20810.
Article CAS PubMed Google Scholar
Zhang, M., Huang, C., Wang, Z., et al., In silico analysis of non-synonymous single nucleotide polymorphisms (nsSNPs) in the human GJA3 gene associated with congenital cataract, BMC Mol. Cell Biol., 2021, vol. 21, no. 1, p. 12. https://doi.org/10.1186/s12860-020-00252-7
Ashkenazy, H., Abadi, S., Martz, E., et al., ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules, Nucleic Acids Res., 2016, vol. 44, no. W1, pp. W344—W350. https://doi.org/10.1093/nar/gkw408
Article CAS PubMed PubMed Central Google Scholar
Savojardo, C., Manfredi, M., Martelli, P.L., and Casadio, R., Solvent accessibility of residues undergoing pathogenic variations in humans: from protein structures to protein sequences, Front. Mol. Biosci., 2021, vol. 7. https://doi.org/10.3389/fmolb.2020.626363
Zhang, B., Li, L., and Lü, Q., Protein solvent-accessibility prediction by a stacked deep bidirectional recurrent neural network, Biomolecules, 2018, vol. 8, no. 2. https://doi.org/10.3390/biom8020033
Høie, M.H., Kiehl, E.N., Petersen, B., et al., NetSurfP-3.0: accurate and fast prediction of protein structural features by protein language models and deep learning, Nucleic Acids Res., 2022, vol. 50, no. W1, pp. W510—W515. https://doi.org/10.1093/nar/gkac439
Article CAS PubMed PubMed Central Google Scholar
Warde-Farley, D., Donaldson, S.L., Comes, O., et al., The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function, Nucleic Acids Res., 2010, vol. 38, no. Web Server issue, pp. W214—W220. https://doi.org/10.1093/nar/gkq537
Paysan-Lafosse, T., Blum, M., Chuguransky, S., et al., InterPro in 2022, Nucleic Acids Res., 2023, vol. 51, no. D1, pp. D418—D427. https://doi.org/10.1093/nar/gkac993
Article CAS PubMed Google Scholar
Pejaver, V., Urresti, J., Lugo-Martinez, J., et al., Inferring the molecular and phenotypic impact of amino acid variants with MutPred2, Nat. Commun., 2020, vol. 11, no. 1, p. 5918. https://doi.org/10.1038/s41467-020-19669-x
Article CAS PubMed PubMed Central Google Scholar
Venselaar, H., te Beek, T.A., Kuipers, R.K., et al., Protein structure analysis of mutations causing inheritable diseases. an e-science approach with life scientist friendly interfaces, BMC Bioinf., 2010, vol. 11. https://doi.org/10.1186/1471-2105-11-548
Waterhouse, A., Bertoni, M., Bienert, S., et al., SWISS-MODEL: homology modelling of protein structures and complexes, Nucleic Acids Res., 2018, vol. 46, no. W1, pp. W296—W303. https://doi.org/10.1093/nar/gky427
Article CAS PubMed PubMed Central Google Scholar
Berman, H.M., Westbrook, J., Feng, Z., et al., The protein data bank, Nucleic Acids Res., 2000, vol. 28, no. 1, pp. 235—242. https://doi.org/10.1093/nar/28.1.235
Article CAS PubMed PubMed Central Google Scholar
Liu, Y., Yang, X., Gan, J., et al., CB-Dock2: improved protein—ligand blind docking by integrating cavity detection, docking and homologous template fitting, Nucleic Acids Res., 2020, vol. 50, no. W1, pp. W159—W164. https://doi.org/10.1093/nar/gkac394
Comments (0)