Bioinformatics Analysis of Non-Synonymous Single Nucleotide Polymorphisms in Human Adk Gene

Boison, D. and Jarvis, M.F., Adenosine kinase a key regulator of purinergic physiology, Biochem. Pharmacol., 2021, vol. 187, p. 114321. https://doi.org/10.1016/j.bcp.2020.114321

Article  CAS  PubMed  Google Scholar 

Kiese, K., Jablonski, J., Boison, D., and Kobow, K., Dynamic regulation of the adenosine kinase gene during early postnatal brain development and maturation, Front. Mol. Neurosci., 2016, vol. 9, p. 99. https://doi.org/10.3389/fnmol.2016.00099

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bjursell, M.K., Blom, H.J., Cayuela, J.A., et al., Adenosine kinase deficiency disrupts the methionine cycle and causes hypermethioninemia, encephalopathy, and abnormal liver function, Am. J. Hum. Genet., 2011, vol. 89, no. 4, pp. 507—515. https://doi.org/10.1016/j.ajhg.2011.09.004

Article  CAS  PubMed  PubMed Central  Google Scholar 

Boison, D., Adenosine kinase exploitation for therapeutic gain, Pharmacol. Rev., 2013, vol. 65, no. 3, pp. 906—943. https://doi.org/10.1124/pr.112.006361

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sandau, U.S., Colino-Oliveira, M., Jones, A., et al., Adenosine kinase deficiency in the brain results in maladaptive synaptic plasticity, J. Neurosci., 2016, vol. 36, no. 48, pp. 12117—12128. https://doi.org/10.1523/JNEUROSCI.2146-16.2016

Article  CAS  PubMed  PubMed Central  Google Scholar 

Staufner, C., Lindner, M., Dionisi-Vici, C., et al., Adenosine kinase deficiency: expanding the clinical spectrum and evaluating therapeutic options, J. Inherit. Metab. Dis., 2016, vol. 39, no. 2, pp. 273—283. https://doi.org/10.1007/s10545-015-9904-y

Article  CAS  PubMed  Google Scholar 

Park, J. and Gupta, R.S., Adenosine kinase and ribokinase—the RK family of proteins, Cell. Mol. Life Sci., 2008, vol. 65, no. 18, pp. 2875—2896. https://doi.org/10.1007/s00018-008-8123-1

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cui, X.A., Singh, B., Park, J., and Gupta, R.S., Subcellular localization of adenosine kinase in mammalian cells: the long isoform of AdK is localized in the nucleus, Biochem. Biophys. Res. Commun., 2009, vol. 388, no. 1, pp. 46—50. https://doi.org/10.1016/j.bbrc.2009.07.106

Article  CAS  PubMed  Google Scholar 

Yazar, M. and Özbek, P., In silico tools and approaches for the prediction of functional and structural effects of single-nucleotide polymorphisms on proteins: an expert review, OMICS J. Integr. Biol., 2021, vol. 25, no. 1, pp. 23—37. https://doi.org/10.1089/omi.2020.0141

Article  CAS  Google Scholar 

Wu, J. and Jiang, R., Prediction of deleterious nonsynonymous single-nucleotide polymorphism for human diseases, Sci. World J., 2013, vol. 2013, p. 675851. https://doi.org/10.1155/2013/675851

Article  CAS  Google Scholar 

Sherry, S.T., Ward, M., and Sirotkin, K., dbSNP-database for single nucleotide polymorphisms and other classes of minor genetic variation, Genome Res., 1999, vol. 9, no. 8, pp. 677—679. https://doi.org/10.1101/gr.9.8.677

Article  CAS  PubMed  Google Scholar 

The UniProt Consortium, UniProt: the universal protein knowledgebase in 2021, Nucleic Acids Res., 2021, vol. 49, no. D1, pp. D480—D489. https://doi.org/10.1093/nar/gkaa1100

Article  CAS  Google Scholar 

Ng, P.C. and Henikoff, S., SIFT: predicting amino acid changes that affect protein function, Nucleic Acids Res., 2003, vol. 31, no. 13, pp. 3812—3814. https://doi.org/10.1093/nar/gkg509

Article  CAS  PubMed  PubMed Central  Google Scholar 

Capriotti, E., Calabrese, R., and Casadio, R., Predicting the insurgence of human genetic diseases associated to single point protein mutations with support vector machines and evolutionary information, Bioinform., 2006, vol. 22, no. 22, pp. 2729—2734. https://doi.org/10.1093/bioinformatics/btl423

Article  CAS  Google Scholar 

Capriotti, E., Calabrese, R., Fariselli, P., et al., WS-SNPs&GO: a web server for predicting the deleterious effect of human protein variants using functional annotation, BMC Genom., 2013, vol. 14, no. S6. https://doi.org/10.1186/1471-2164-14-S3-S6

Yates, C.M., Filippis, I., Kelley, L.A., and Sternberg, M.J.E., SuSPect: Enhanced prediction of single amino acid variant (SAV) phenotype using network features, J. Mol. Biol., 2014, vol. 426, no. 14, pp. 2692—2701. https://doi.org/10.1016/j.jmb.2014.04.026

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hecht, M., Bromberg, Y., and Rost, B., Better prediction of functional effects for sequence variants, BMC Genom., 2015, vol. 16, no. 8. https://doi.org/10.1186/1471-2164-16-S8-S1

Shihab, H.A., Gough, J., Cooper, D.N. et al., Predicting the functional, molecular, and phenotypic consequences of amino acid substitutions using hidden Markov models, Hum. Mutat., 2013, vol. 34, no. 1, pp. 57—65. https://doi.org/10.1002/humu.22225

Article  CAS  PubMed  Google Scholar 

Adzhubei, I., Jordan, D.M., and Sunyaev, S.R., Predicting functional effect of human missense mutations using PolyPhen-2, Curr. Protoc. Hum. Genet., 2013, chapter 7, unit 7.20. https://doi.org/10.1002/0471142905.hg0720s76.

Capriotti, E., Fariselli, P., and Casadio, R., I-Mutant2.0: predicting stability changes upon mutation from the protein sequence or structure, Nucleic Acids Res., 2005, vol. 33, Web Server issue, pp. W306—W310. https://doi.org/10.1093/nar/gki375

Cheng, J., Randall, A., and Baldi, P., Prediction of protein stability changes for single-site mutations using support vector machines, Proteins, 2006, vol. 62, no. 4, pp. 1125—1132. https://doi.org/1002/prot.20810.

Article  CAS  PubMed  Google Scholar 

Zhang, M., Huang, C., Wang, Z., et al., In silico analysis of non-synonymous single nucleotide polymorphisms (nsSNPs) in the human GJA3 gene associated with congenital cataract, BMC Mol. Cell Biol., 2021, vol. 21, no. 1, p. 12. https://doi.org/10.1186/s12860-020-00252-7

Article  CAS  Google Scholar 

Ashkenazy, H., Abadi, S., Martz, E., et al., ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules, Nucleic Acids Res., 2016, vol. 44, no. W1, pp. W344—W350. https://doi.org/10.1093/nar/gkw408

Article  CAS  PubMed  PubMed Central  Google Scholar 

Savojardo, C., Manfredi, M., Martelli, P.L., and Casadio, R., Solvent accessibility of residues undergoing pathogenic variations in humans: from protein structures to protein sequences, Front. Mol. Biosci., 2021, vol. 7. https://doi.org/10.3389/fmolb.2020.626363

Zhang, B., Li, L., and Lü, Q., Protein solvent-accessibility prediction by a stacked deep bidirectional recurrent neural network, Biomolecules, 2018, vol. 8, no. 2. https://doi.org/10.3390/biom8020033

Høie, M.H., Kiehl, E.N., Petersen, B., et al., NetSurfP-3.0: accurate and fast prediction of protein structural features by protein language models and deep learning, Nucleic Acids Res., 2022, vol. 50, no. W1, pp. W510—W515. https://doi.org/10.1093/nar/gkac439

Article  CAS  PubMed  PubMed Central  Google Scholar 

Warde-Farley, D., Donaldson, S.L., Comes, O., et al., The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function, Nucleic Acids Res., 2010, vol. 38, no. Web Server issue, pp. W214—W220. https://doi.org/10.1093/nar/gkq537

Paysan-Lafosse, T., Blum, M., Chuguransky, S., et al., InterPro in 2022, Nucleic Acids Res., 2023, vol. 51, no. D1, pp. D418—D427. https://doi.org/10.1093/nar/gkac993

Article  CAS  PubMed  Google Scholar 

Pejaver, V., Urresti, J., Lugo-Martinez, J., et al., Inferring the molecular and phenotypic impact of amino acid variants with MutPred2, Nat. Commun., 2020, vol. 11, no. 1, p. 5918. https://doi.org/10.1038/s41467-020-19669-x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Venselaar, H., te Beek, T.A., Kuipers, R.K., et al., Protein structure analysis of mutations causing inheritable diseases. an e-science approach with life scientist friendly interfaces, BMC Bioinf., 2010, vol. 11. https://doi.org/10.1186/1471-2105-11-548

Waterhouse, A., Bertoni, M., Bienert, S., et al., SWISS-MODEL: homology modelling of protein structures and complexes, Nucleic Acids Res., 2018, vol. 46, no. W1, pp. W296—W303. https://doi.org/10.1093/nar/gky427

Article  CAS  PubMed  PubMed Central  Google Scholar 

Berman, H.M., Westbrook, J., Feng, Z., et al., The protein data bank, Nucleic Acids Res., 2000, vol. 28, no. 1, pp. 235—242. https://doi.org/10.1093/nar/28.1.235

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu, Y., Yang, X., Gan, J., et al., CB-Dock2: improved protein—ligand blind docking by integrating cavity detection, docking and homologous template fitting, Nucleic Acids Res., 2020, vol. 50, no. W1, pp. W159—W164. https://doi.org/10.1093/nar/gkac394

Article  CAS 

Comments (0)

No login
gif