Kudryavtseva N.N., Bakshtanovskaya I.V., and Koryakina L.A., Social model of depression in mice of C57BL/6J strain, Pharmacol. Biochem. Behav., 1991, vol. 38, no. 2, pp. 315—320. https://doi.org/10.1016/0091-3057(91)90284-9
Article CAS PubMed Google Scholar
Avgustinovich, D.F., Alekseenko, O.V., Bakshtanovskaya, I.V., Koryakina, L.A., Lipina, T.V., Tenditnik, M.V., Bondar’, N.P., Kovalenko, I.L., and Kudryavtseva, N.N., Dynamic changes of brain serotonergic and dopaminergic activities during development of anxious depression: experimental study, Usp. Fiziol. Nauk., 2004, vol. 35, no. 4, pp. 19—40.
Kudryavtseva, N.N., Amstislavskaya, T.G., Avgustinovich, D.F., Bakshtanovskaya, I.V., Lipina, T.V., Gorbach, O.V., and Koryakina, L.A., Effect of repeated experience of victory and defeat in social confrontations on the state of the mouse brain serotonergic system, Zh. Vyssh. Nervn. Deyat. im. I.P. Pavlova, 1996, vol. 46, no. 6, pp. 1088—1096.
Amstislavskaya, T.G. and Kudryavtseva, N.N., Effect of repeated experience of victory and defeat in daily agonistic confrontations on brain tryptophan hydroxylase activity, FEBS Lett., 1997, vol. 406, pp. 106—108. https://doi.org/10.1016/s0014-5793(97)00252-4
Article CAS PubMed Google Scholar
Smagin, D., Boyarskikh, U., Bondar, N., et al., Reduction of serotonergic gene expression in the raphe nuclei of the midbrain under positive fighting experience in male mice, Adv. Biosci. Biotechnol., 2013, vol. 4, pp. 36—44.
Puglisi-Allegra, S. and Cabib, S., Effects of defeat experiences on dopamine metabolism in different brain areas of the mouse, Aggressive Behav., 1990, vol. 16, pp. 271—284. https://doi.org/10.1358/dnp.1998.11.9.863689
Tidey, J.W. and Miczek, K.A., Social defeat stress selectively alters mesocorticolimbic dopamine release: an in vivo microdialysis study, Brain Res., 1996, vol. 721, pp. 140—149. https://doi.org/10.1016/0006-8993(96)00159-x
Article CAS PubMed Google Scholar
Fatemi, S.H., Stary, J.M., Earle, J.A., et al., GABAergic dysfunction in schizophrenia and mood disorders as reflected by decreased levels of glutamic acid decarboxylase 65 and 67 kDa and Reelin proteins in cerebellum, Schizophr. Res., 2005, vol. 72, pp. 109—122. https://doi.org/10.1016/j.schres.2004.02.017
Karolewicz, B., Maciag, D., O’Dwyer, G., et al., Reduced level of glutamic acid decarboxylase 67 kDa in the prefrontal cortex in major depression, Int. J. Neuropsychopharmacol., 2010, vol. 13, pp. 411—420. https://doi.org/10.1017/S1461145709990587
Article CAS PubMed Google Scholar
Browne, C.A. and Lucki, I., Targeting opioid dysregulation in depression for the development of novel therapeutics, Pharmacol. Ther., 2019, vol. 201, pp. 51—76. https://doi.org/10.1016/j.pharmthera.2019.04.009
Article CAS PubMed PubMed Central Google Scholar
Anderson, S.A., Michaelides, M., Zarnegar, P., et al., Impaired periamygdaloid-cortex prodynorphin is characteristic of opiate addiction and depression, J. Clin. Invest., 2013, vol. 123, pp. 5334—5341. https://doi.org/10.1172/JCI70395
Article CAS PubMed PubMed Central Google Scholar
Melo, I., Drews, E., Zimmer, A., and Bilkei-Gorzo, A., Enkephalin knockout male mice are resistant to chronic mild stress, Genes Brain Behav., 2014, vol. 13, pp. 550—558. https://doi.org/10.1111/gbb.12139
Article CAS PubMed Google Scholar
Qu, N., He, Y., Wang, C., et al., A POMC-originated circuit regulates stress-induced hypophagia, depression, and anhedonia, Mol. Psychiatry, 2020, vol. 25, pp. 1006—1021. https://doi.org/10.1038/s41380-019-0506-1
Article CAS PubMed Google Scholar
Parsons, C.G., Danysz, W., and Quack, G., Glutamate in CNS disorders as a target for drug development: an update, Drug News Perspect., 1998, vol. 11, pp. 523—569. https://doi.org/10.1358/dnp.1998.11.9.863689
Article CAS PubMed Google Scholar
Nestler E.J. and Carlezon W.A., Jr., The mesolimbic dopamine reward circuit in depression, Biol. Psychiatry, 2006, vol. 59, pp. 1151—1159. https://doi.org/10.1016/j.biopsych.2005.09.018
Article CAS PubMed Google Scholar
Hashimoto, K., Emerging role of glutamate in the pathophysiology of major depressive disorder, Brain Res. Rev., 2009, vol. 61, pp. 105—123. https://doi.org/10.1016/j.brainresrev.2009.05.005
Article CAS PubMed Google Scholar
Barker, D.J., Root, D.H., Zhang, S., and Morales, M., Multiplexed neurochemical signaling by neurons of the ventral tegmental area, J. Chem. Neuroanat., 2016, vol. 73, pp. 33—42. https://doi.org/10.1016/j.jchemneu.2015.12.016
Article CAS PubMed PubMed Central Google Scholar
Kudryavtseva, N.N., Smagin, D.A., Kovalenko, I.L., and Vishnivetskaya, G.B., Repeated positive fighting experience in male inbred mice, Nat. Protoc., 2014, vol. 9, pp. 2705—2717. https://doi.org/10.1038/nprot.2014.156
Kudryavtseva, N.N. and Avgustinovich, D.F., Behavioral and physiological markers of experimental depression induced by social conflicts (DISC), Aggressive Behav., 1998, vol. 24, pp. 271—286.
Kudryavtseva, N.N., Development of mixed anxiety/depression-like state as a consequence of chronic anxiety: review of experimental data, Curr. Top. Behav. Neurosci., 2022, vol. 54, pp. 125—152. https://doi.org/10.1007/7854_2021_248
Article CAS PubMed Google Scholar
Kovalenko, I.L., Smagin, D.A., Galyamina, A.G., et al., Changes in the expression of dopaminergic genes in brain structures of male mice exposed to chronic social defeat stress: an RNA-seq study, Mol. Biol. (Moscow), 2016, vol. 50, no. 2, pp. 161—163. https://doi.org/10.1134/S0026893316010088
Hebert, M.A., Serova, L.I., and Sabban, E.L., Single and repeated immobilization stress differentially trigger induction and phosphorylation of several transcription factors and mitogen activated protein kinasesin the rat locus coeruleus, J. Neurochem., 2005, vol. 95, pp. 484—498. https://doi.org/10.1111/j.1471-4159.2005.03386.x
Article CAS PubMed Google Scholar
Kvetnansky, R., Sabban, E.L., and Palkovits, M., Catecholaminergic systems in stress: structural and molecular genetic approaches, Physiol. Rev., 2009, vol. 89, pp. 535—606. https://doi.org/10.1152/physrev.00042.2006
Article CAS PubMed Google Scholar
Kudryavtseva, N.N., Smagin, D.A., Kovalenko, I.L., et al., Serotonergic genes in the development of anxiety/depression-like state and pathology of aggressive behavior in male mice: RNA-seq data, Mol. Biol. (Moscow), 2017, vol. 51, pp. 251—262. https://doi.org/10.1134/S0026893317020133
George, J.M., The synucleins, Genome Biol., 2002, vol. 3. https://doi.org/10.1186/gb-2001-3-1-reviews3002
Oaks, A.W. and Sidhu, A., Synuclein modulation of monoamine transporters, FEBS Lett., 2011, vol. 585, pp. 1001—1006. https://doi.org/10.1016/j.febslet.2011.03.009
Article CAS PubMed PubMed Central Google Scholar
Galyamina, A.G., Kovalenko, I.L., Smagin, D.A., and Kudryavtseva, N.N., Changes in the expression of neurotransmitter system genes in the ventral tegmental area in depressed mice: RNA-seq data, Neurosci. Behav. Physiol., 2018, vol. 48, pp. 591—602.
Frieling, H., Gozner, A., Römer, K.D., et al., Alpha-synuclein mRNA levels correspond to beck depression inventory scores in females with eating disorders, Neuropsychobiology, 2008, vol. 58, pp. 48—52. https://doi.org/10.1159/000155991
Article CAS PubMed Google Scholar
Ninkina, N., Peters, O., Millership, S., et al., Gamma-synucleinopathy: neurodegeneration associated with overexpression of the mouse protein, Hum. Mol. Genet., 2009, vol. 18, pp. 1779—1794. https://doi.org/10.1093/hmg/ddp090
Article CAS PubMed PubMed Central Google Scholar
Merrill, J.O., Korff, M., Banta-Green, C.J., et al., Prescribed opioid difficulties, depression and opioid dose among chronic opioid therapy patients, Gen. Hosp. Psychiatry, 2012, vol. 34, pp. 581—587. https://doi.org/10.1016/j.genhosppsych.2012.06.018
Comments (0)