L31 Transposons of Hexacorallia: Distribution, Diversity, and Evolution

Kojima, K.K., Structural and sequence diversity of eukaryotic transposable elements, Genes Genet. Syst., 2020, vol. 94, no. 6, pp. 233—252. https://doi.org/10.1266/ggs.18-00024

Article  CAS  PubMed  Google Scholar 

Wells, J.N. and Feschotte, C.A., Field guide to eukaryotic transposable elements, Annu. Rev. Genet., 2020, vol. 54, pp. 539—561. https://doi.org/10.1146/annurev-genet-040620-022145

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wicker, T., Sabot, F., Hua-Van, A., et al., A unified classification system for eukaryotic transposable elements, Nat. Rev. Genet., 2007, vol. 8, no. 12, pp. 973—982. https://doi.org/10.1038/nrg2165

Article  CAS  PubMed  Google Scholar 

Kapitonov, V.V. and Jurka, J., A universal classification of eukaryotic transposable elements implemented in Repbase, Nat. Rev. Genet., 2008, vol. 9, pp. 411—412. https://doi.org/10.1038/nrg2165-c1

Article  PubMed  Google Scholar 

Yuan, Y.W. and Wessler, S.R., The catalytic domain of all eukaryotic cut-and-paste transposase superfamilies, Proc. Natl. Acad. Sci. U.S.A., 2011, vol. 108, no. 19, pp. 7884—7889. https://doi.org/10.1073/pnas.1104208108

Article  PubMed  PubMed Central  Google Scholar 

Arkhipova, I.R., Using bioinformatic and phylogenetic approaches to classify transposable elements and understand their complex evolutionary histories, Mob. DNA, 2017, vol. 8, no. 19. https://doi.org/10.1186/s13100-017-0103-2

Gao, B., Wang, Y.L., Diaby, M., et al., Evolution of pogo, a separate superfamily of IS630-Tc1-mariner transposons, revealing recurrent domestication events in vertebrates, Mob. DNA, 2020, vol. 11, no. 25.

Shi, S., Puzakov, M., Guan, Z., et al., Prokaryotic and eukaryotic horizontal transfer of Sailor (dd82e), a new superfamily of IS630-Tc1-Mariner DNA-transposons, Biology (Basel), 2021, vol. 10, no. 10. https://doi.org/10.3390/biology10101005

Puzakov, M.V. and Puzakova, L.V., Structure and evolution of DNA transposons of the L31 superfamily in bivalves, Mol. Biol., 2024, vol. 58, no. 1, pp. 57—75. https://doi.org/10.1134/S0026893324010114

Article  Google Scholar 

Shi, S., Puzakov, M.V., Puzakova, L.V., et al., Hiker, a new family of DNA transposons encoding transposases with DD35E motifs, displays a distinct phylogenetic relationship with most known DNA transposon families of IS630-Tc1-mariner (ITm), Mol. Phylogenet. Evol., 2023, vol. 188. https://doi.org/10.1016/j.ympev.2023.107906

Aziz, R.K., Breitbart, M., and Edwards, R.A., Transposases are the most abundant, most ubiquitous genes in nature, Nucleic Acids Res., 2010, vol. 38, no. 13, pp. 4207—4217. https://doi.org/10.1093/nar/gkq140

Article  CAS  PubMed  PubMed Central  Google Scholar 

Puzakov, M.V., Puzakova, L.V., and Cheresiz, S.V., An analysis of IS630/Tc1/mariner transposons in the genome of a pacific oyster Crassostrea gigas, J. Mol. Evol., 2018, vol. 86, no. 8, pp. 566—580. https://doi.org/10.1007/s00239-018-9868-2

Article  CAS  PubMed  Google Scholar 

Dupeyron, M., Baril, T., Bass, C., and Hayward, A., Phylogenetic analysis of the Tc1/mariner superfamily reveals the unexplored diversity of pogo-like elements, Mob. DNA, 2020, vol. 11, no. 21. https://doi.org/10.1186/s13100-020-00212-0

Tellier, M., Bouuaert, C.C., and Chalmers, R., Mariner and the ITm superfamily of transposons, Microbiol. Spectrum, 2015, vol. 3, no. 2. https://doi.org/10.1128/microbiolspec.MDNA3-0033-2014

Ivics, Z. and Izsvák, Z., Sleeping Beauty transposition, Microbiol. Spectrum, 2015, vol. 3, no. 2. https://doi.org/10.1128/microbiolspec.MDNA3-0042-2014

Jahn, C.L., Doktor, S.Z., Frels, J.S., et al., Structures of the Euplotes crassus Tec1 and Tec2 elements: identification of putative transposase coding regions, Gene, 1993, vol. 133, no. 1, pp. 71—78. https://doi.org/10.1016/0378-1119(93)90226-s

Article  CAS  PubMed  Google Scholar 

Chen, X. and Landweber, L.F., Phylogenomic analysis reveals genome-wide purifying selection on TBE transposons in the ciliate Oxytricha, Mob. DNA, 2016, vol. 7, no. 2. https://doi.org/10.1186/s13100-016-0057-9

Dupeyron, M., Singh, K.S., Bass, C., and Hayward, A., Evolution of Mutator transposable elements across eukaryotic diversity, Mob. DNA, 2019, vol. 10, no. 12. https://doi.org/10.1186/s13100-019-0153-8

Doak, T.G., Witherspoon, D.J., Jahn, C.L., and Herrick, G., Selection on the genes of Euplotes crassus Tec1 and Tec2 transposons: evolutionary appearance of a programmed frameshift in a Tec2 gene encoding a tyrosine family site-specific recombinase, Eukaryotic Cell, 2003, vol. 2, no. 1, pp. 95—102. https://doi.org/10.1128/EC.2.1.95-102.2003

Article  CAS  PubMed  PubMed Central  Google Scholar 

Altschul, S.F., Madden, T.L., Schäffer, A.A., et al., Gapped BLAST and PSI-BLAST: a new generation of protein database search programs, Nucleic Acids Res., 1997, vol. 25, no. 17, pp. 3389—3402. https://doi.org/10.1093/nar/25.17.3389

Article  CAS  PubMed  PubMed Central  Google Scholar 

Buchan, D.W.A. and Jones, D.T., The PSIPRED protein analysis workbench: 20 years on, Nucleic Acids Res., 2019, vol. 47, pp. 402—407. https://doi.org/10.1093/nar/gkz297

Article  CAS  Google Scholar 

Crooks, G.E., Hon, G., Chandonia, J.M., and Brenner, S.E., WebLogo: a sequence logo generator, Genome Res., 2004, vol. 14, no. 6, pp. 1188—1190. https://doi.org/10.1101/gr.849004

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hoang, D.T., Chernomor, O., von Haeseler, A., et al., UFBoot2: improving the ultrafast bootstrap approximation, Mol. Biol. Evol., 2018, vol. 35, no. 2, pp. 518—522. https://doi.org/10.1093/molbev/msx281

Article  CAS  PubMed  Google Scholar 

Kalyaanamoorthy, S., Minh, B.Q., Wong, T.K.F., et al., ModelFinder: fast model selection for accurate phylogenetic estimates, Nat. Methods, 2017, vol. 14, no. 6, pp. 587—589. https://doi.org/10.1038/nmeth.4285

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yamada, K.D., Tomii, K., and Katoh, K., Application of the MAFFT sequence alignment program to large data—reexamination of the usefulness of chained guide trees, Bioinformatics, vol. 32, no. 21, pp. 3246—3251. https://doi.org/10.1093/bioinformatics/btw4122016

Kumar, M., Suleski, J.E., Craig, A.E., et al., TimeTree 5: an expanded resource for species divergence times, Mol. Biol. Evol., 2022, vol. 39, no. 8. https://doi.org/10.1093/molbev/msac174

Wallau, G.L., Ortiz, M.F., and Loreto, E.L., Horizontal transposon transfer in eukarya: detection, bias, and perspectives, Genome Biol. Evol., 2012, vol. 4, no. 8, pp. 689—699. https://doi.org/10.1093/gbe/evs055

Article  CAS  PubMed  Google Scholar 

Melo, E.S. and Wallau, G.L., Mosquito genomes are frequently invaded by transposable elements through horizontal transfer, PLoS Genet., 2020, vol. 16, no. 11. https://doi.org/10.1371/journal.pgen.1008946

Blumenstiel, J.P., Birth, school, work, death, and resurrection: the life stages and dynamics of transposable element proliferation, Genes (Basel), 2019, vol. 10, no. 5. https://doi.org/10.3390/genes10050336

Comments (0)

No login
gif