Riollet, C., Rainard, P., and Poutrel, B., Cell subpopulations and cytokine expression in cow milk in response to chronic Staphylococcus aureus infection, J. Dairy. Sci., 2001, vol. 84, no. 5, pp. 1077–1084. https://doi.org/10.3168/jds.S0022-0302(01)74568-7
Article CAS PubMed Google Scholar
Kong, R.S., Liang, G., Chen, Y., et al., Transcriptome profiling of the rumen epithelium of beef cattle differing in residual feed intake, BMC Genomics, 2016, vol. 17, p. 592. https://doi.org/10.1186/s12864-016-2935-4
Article CAS PubMed PubMed Central Google Scholar
Resnyk, C.W., Chen, C., Huang, H., et al., RNA-Seq analysis of abdominal fat in genetically fat and lean chickens highlights a divergence in expression of genes controlling adiposity, hemostasis, and lipid metabolism, PLoS One, 2015, vol. 10, no. 10. https://doi.org/10.1371/journal.pone.0139549
Li, X. and Wang, C.Y., From bulk, single-cell to spatial RNA sequencing, Int. J. Oral. Sci., 2021, vol. 13, no. 1, p. 36. https://doi.org/10.1038/s41368-021-00146-0
Article ADS PubMed PubMed Central Google Scholar
Jovic, D., Liang, X., Zeng, H., et al., Single-cell RNA sequencing technologies and applications: a brief overview, Clin. Transl. Med., 2022, vol. 12, no. 3. https://doi.org/10.1002/ctm2.694
Hwang, B., Lee, J.H., and Bang, D., Single-cell RNA sequencing technologies and bioinformatics pipelines, Exp. Mol. Med., 2018, vol. 50, no. 8, pp. 1–14. https://doi.org/10.1038/s12276-018-0071-8
Article CAS PubMed PubMed Central Google Scholar
Wiarda, J.E., Trachsel, J.M., Sivasankaran, S.K., et al., Intestinal single-cell atlas reveals novel lymphocytes in pigs with similarities to human cells, Life Sci. Alliance, 2022, vol. 5, no. 10. https://doi.org/10.26508/lsa.202201442
Junhong, W., Mingyang, C., Ming, G., et al., Single-cell transcriptional analysis of lamina propria lymphocytes in the jejunum reveals ILC-like cells in pigs, bioRxiv, 2023. https://doi.org/10.1101/2023.01.01.522424
Eng, C.L., Lawson, M., Zhu, Q., et al., Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH, Nature, 2019, vol. 568, no. 7751, pp. 235–239. https://doi.org/10.1038/s41586-019-1049-y
Article ADS CAS PubMed PubMed Central Google Scholar
Cassidy, A. and Jones, J., Developments in situ hybridisation, Methods, 2014, vol. 70, no. 1, pp. 39–45. https://doi.org/10.1016/j.ymeth.2014.04.006
Article CAS PubMed Google Scholar
Young, A.P., Jackson, D.J., and Wyeth, R.C., A technical review and guide to RNA fluorescence in situ hybridization, Peer J., 2020, vol. 8. https://doi.org/10.7717/peerj.8806
Weise, A. and Liehr, T., Rapid prenatal aneuploidy screening by fluorescence in situ hybridization (FISH), Methods Mol. Biol., 2019, vol. 1885, pp. 129–137. https://doi.org/10.1007/978-1-4939-8889-1_9
Article CAS PubMed Google Scholar
Prudent, E. and Raoult, D., Fluorescence in situ hybridization, a complementary molecular tool for the clinical diagnosis of infectious diseases by intracellular and fastidious bacteria, FEMS Microbiol. Rev., 2019, vol. 43, no. 1, pp. 88–107. https://doi.org/10.1093/femsre/fuy040
Article CAS PubMed Google Scholar
O’Connor, S.J.M., Turner, K.R., and Barrans, S.L., Practical application of fluorescent in situ hybridization techniques in clinical diagnostic laboratories, Methods Mol. Biol., 2020, vol. 2148, pp. 35–70. https://doi.org/10.1007/978-1-0716-0623-0_3
Article CAS PubMed Google Scholar
Chrzanowska, N.M., Kowalewski, J., and Lewandowska, M.A., Use of fluorescence in situ hybridization (FISH) in diagnosis and tailored therapies in solid tumors, Molecules, 2020, vol. 25, no. 8. https://doi.org/10.3390/molecules25081864
Zirkel, A. and Papantonis, A., Detecting circular RNAs by RNA fluorescence in situ hybridization, Methods Mol. Biol., 2018, vol. 1724, pp. 69–75. https://doi.org/10.1007/978-1-4939-7562-4_6
Article CAS PubMed Google Scholar
Uhl, G.R., In situ hybridization: quantitation using radiolabeled hybridization probes, Methods Enzymol., 1989, vol. 168, pp. 741–752. https://doi.org/10.1016/0076-6879(89)68055-x
Article CAS PubMed Google Scholar
Wang, F., Flanagan, J., Su, N., et al., RNAscope: a novel in situ RNA analysis platform for formalin-fixed, paraffin-embedded tissues, J. Mol. Diagn., 2012, vol. 14, no. 1, pp. 22–29. https://doi.org/10.1016/j.jmoldx.2011.08.002
Article CAS PubMed PubMed Central Google Scholar
Itzkovitz, S. and van Oudenaarden, A., Validating transcripts with probes and imaging technology, Nat. Methods, 2011, vol. 8, no. 4, pp. S12–S19. https://doi.org/10.1038/nmeth.1573
Article CAS PubMed PubMed Central Google Scholar
Kang, H., Sheng, L., and Yongsheng, C., HuluFISH non-denaturing in situ detection of genomic DNA opened by CRISPR-Cas9 nickase and exonuclease, bioRxiv, 2021. https://doi.org/10.1101/2021.12.23.473974
Asp, M., Bergenstråhle, J., and Lundeberg, J., Spatially resolved transcriptomes—next generation tools for tissue exploration, BioEssays, 2020, vol. 42, no. 10. https://doi.org/10.1002/bies.201900221
Speel, E.J., Hopman, A.H., and Komminoth, P., Tyramide signal amplification for DNA and mRNA in situ hybridization, Methods Mol. Biol., 2006, vol. 326, pp. 33–60. https://doi.org/10.1385/1-59745-007-3:33
Article CAS PubMed Google Scholar
Seroussi, E., Knytl, M., Pitel, F., et al., Avian expression patterns and genomic mapping implicate leptin in digestion and TNF in immunity, suggesting that their interacting adipokine role has been acquired only in mammals, Int. J. Mol. Sci., 2019, vol. 20, no. 18. https://doi.org/10.3390/ijms20184489
Choi, H.M.T., Schwarzkopf, M., Fornace, M.E., et al., Third-generation in situ hybridization chain reaction: multiplexed, quantitative, sensitive, versatile, robust, Development, 2018, vol. 145, no. 12. https://doi.org/10.1242/dev.165753
Jeong, W., Bae, H., Lim, W., et al., Dicer1, AGO3, and AGO4 microRNA machinery genes are differentially expressed in developing female reproductive organs and overexpressed in cancerous ovaries of chickens, J. Anim. Sci., 2017, vol. 95, no. 11, pp. 4857–4868. https://doi.org/10.2527/jas2017.1846
Article CAS PubMed PubMed Central Google Scholar
Hoy, J., Nishimura, H., Mehalic, T., et al., Ontogeny of renin gene expression in the chicken, Gallus gallus, Gen. Comp. Endocrinol., 2020, vol. 296. https://doi.org/10.1016/j.ygcen.2020.113533
Ogata, M., Hayashi, G., Ichiu, A., et al., l-DNA-tagged fluorescence in situ hybridization for highly sensitive imaging of RNAs in single cells, Org. Biomol. Chem., 2020, vol. 18, no. 40, pp. 8084–8088. https://doi.org/10.1039/d0ob01635g
Article CAS PubMed Google Scholar
Veselinyová, D., Mašlanková, J., Kalinová, K., et al., Selected in situ hybridization methods: principles and application, Molecules, 2021, vol. 26, no. 13. https://doi.org/10.3390/molecules26133874
Schwarzkopf, M., Choi, H.M.T., and Pierce, N.A., Multiplexed quantitative in situ hybridization for mammalian cells on a slide: qHCR and dHCR imaging (v3.0), Methods Mol. Biol., 2020, vol. 2148, pp. 143–156. https://doi.org/10.1007/978-1-0716-0623-0_9
Article CAS PubMed Google Scholar
Tsuneoka, Y. and Funato, H., Modified in situ hybridization chain reaction using short hairpin DNAs, Front. Mol. Neurosci., 2020, vol. 13. https://doi.org/10.3389/fnmol.2020.00075
Baena-Del Valle, J.A., Zheng, Q., Hicks, J.L., et al., Rapid loss of RNA detection by in situ hybridization in stored tissue blocks and preservation by cold storage of unstained slides, Am. J. Clin. Pathol., 2017, vol. 148, no. 5, pp. 398–415. https://doi.org/10.1093/ajcp/aqx094
Article CAS PubMed PubMed Central Google Scholar
Xiao, L., Labaer, J., and Guo, J., Highly sensitive and multiplexed in situ RNA profiling with cleavable fluorescent tyramide, Cells, 2021, vol. 10, no. 6. https://doi.org/10.3390/cells10061277
Alon, S., Goodwin, D.R., Sinha, A., et al., Expansion sequencing: spatially precise in situ transcriptomics in intact biological systems, Science, 2021, vol. 371, no. 6528. https://doi.org/10.1126/science.aax2656
Lee, J.H., Daugharthy, E.R., Scheiman, J., et al., Fluorescent in situ sequencing (FISSEQ) of RNA for gene expression profiling in intact cells and tissues, Nat. Protoc., 2015, vol. 10, no. 3, pp. 442–458. https://doi.org/10.1038/nprot.2014.191
Article CAS PubMed PubMed Central Google Scholar
Payne, A.C., Chiang, Z.D., Reginato, P.L., et al., In situ genome sequencing resolves DNA sequence and structure in intact biological samples, Science, 2021, vol. 371, no. 6532. https://doi.org/10.1126/science.aay3446
Kishi, J.Y., Liu, N., West, E.R., et al., Light-Seq: light-directed in situ barcoding of biomolecules in fixed cells and tissues for spatially indexed sequencing, Nat. Methods, 2022, vol. 19, no. 11, pp. 1393–1402. https://doi.org/10.1038/s41592-022-01604-1
Article CAS PubMed PubMed Central Google Scholar
Pandit, K., Petrescu, J., Cuevas, M., et al., An open-source toolkit for repurposing Illumina sequencing systems as versatile fluidics and imaging platforms, Sci. Rep., 2022, vol. 12, no. 1, p. 5081. https://doi.org/10.1038/s41598-022-08740-w
Article ADS CAS PubMed PubMed Central Google Scholar
Williams, C.G., Lee, H.J., Asatsuma, T., et al., An introduction to spatial transcriptomics for biomedical research, Genome Med., 2022, vol. 14, no. 1, p. 68. https://doi.org/10.1186/s13073-022-01075-1
Article CAS PubMed PubMed Central Google Scholar
Sicherre, E., Favier, A.L., Riccobono, D., and Nikovics, K., Non-specific binding, a limitation of the immunofluorescence method to study macrophages in situ, Genes, 2021, vol. 12, no. 5. https://doi.org/10.3390/genes12050649
Skaugen, J.M., Seethala, R.R., Chiosea, S.I., et al., Evaluation of NR4A3 immunohistochemistry (IHC) and fluorescence in situ hybridization and comparison with DOG1 IHC for FNA diagnosis of acinic cell carcinoma, Cancer Cytopathol., 2021, vol. 129, no. 2, pp. 104–113. https://doi.org/10.1002/cncy.22338
Article CAS PubMed Google Scholar
Atout, S., Shurrab, S., and Loveridge, C., Evaluation of the suitability of RNAscope as a technique to measure gene expression in clinical diagnostics: a systematic review, Mol. Diagn. Ther., 2022, vol. 26, no. 1, pp. 19–37. https://doi.org/10.1007/s40291-021-00570-2
Article CAS PubMed Google Scholar
Liu, K., Jia, M., and Wong, E.A., Delayed access to feed affects broiler small intestinal morphology and goblet cell ontogeny, Poult. Sci., 2020, vol. 99, no. 11, pp. 5275–5285. https://doi.org/10.1016/j.psj.2020.07.040
Article CAS PubMed PubMed Central Google Scholar
Reynolds, K.L., Cloft, S.E., and Wong, E.A., Changes with age in density of goblet cells in the small intestine of broiler chicks, Poult. Sci., 2020, vol. 99, no. 5, pp. 2342–2348. https://doi.org/10.1016/j.psj.2019.12.052
Comments (0)