Current State of In Situ Gene Expression Studies in Animal Tissues

Riollet, C., Rainard, P., and Poutrel, B., Cell subpopulations and cytokine expression in cow milk in response to chronic Staphylococcus aureus infection, J. Dairy. Sci., 2001, vol. 84, no. 5, pp. 1077–1084. https://doi.org/10.3168/jds.S0022-0302(01)74568-7

Article  CAS  PubMed  Google Scholar 

Kong, R.S., Liang, G., Chen, Y., et al., Transcriptome profiling of the rumen epithelium of beef cattle differing in residual feed intake, BMC Genomics, 2016, vol. 17, p. 592. https://doi.org/10.1186/s12864-016-2935-4

Article  CAS  PubMed  PubMed Central  Google Scholar 

Resnyk, C.W., Chen, C., Huang, H., et al., RNA-Seq analysis of abdominal fat in genetically fat and lean chickens highlights a divergence in expression of genes controlling adiposity, hemostasis, and lipid metabolism, PLoS One, 2015, vol. 10, no. 10. https://doi.org/10.1371/journal.pone.0139549

Li, X. and Wang, C.Y., From bulk, single-cell to spatial RNA sequencing, Int. J. Oral. Sci., 2021, vol. 13, no. 1, p. 36. https://doi.org/10.1038/s41368-021-00146-0

Article  ADS  PubMed  PubMed Central  Google Scholar 

Jovic, D., Liang, X., Zeng, H., et al., Single-cell RNA sequencing technologies and applications: a brief overview, Clin. Transl. Med., 2022, vol. 12, no. 3. https://doi.org/10.1002/ctm2.694

Hwang, B., Lee, J.H., and Bang, D., Single-cell RNA sequencing technologies and bioinformatics pipelines, Exp. Mol. Med., 2018, vol. 50, no. 8, pp. 1–14. https://doi.org/10.1038/s12276-018-0071-8

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wiarda, J.E., Trachsel, J.M., Sivasankaran, S.K., et al., Intestinal single-cell atlas reveals novel lymphocytes in pigs with similarities to human cells, Life Sci. Alliance, 2022, vol. 5, no. 10. https://doi.org/10.26508/lsa.202201442

Junhong, W., Mingyang, C., Ming, G., et al., Single-cell transcriptional analysis of lamina propria lymphocytes in the jejunum reveals ILC-like cells in pigs, bioRxiv, 2023. https://doi.org/10.1101/2023.01.01.522424

Eng, C.L., Lawson, M., Zhu, Q., et al., Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH, Nature, 2019, vol. 568, no. 7751, pp. 235–239. https://doi.org/10.1038/s41586-019-1049-y

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Cassidy, A. and Jones, J., Developments in situ hybridisation, Methods, 2014, vol. 70, no. 1, pp. 39–45. https://doi.org/10.1016/j.ymeth.2014.04.006

Article  CAS  PubMed  Google Scholar 

Young, A.P., Jackson, D.J., and Wyeth, R.C., A technical review and guide to RNA fluorescence in situ hybridization, Peer J., 2020, vol. 8. https://doi.org/10.7717/peerj.8806

Weise, A. and Liehr, T., Rapid prenatal aneuploidy screening by fluorescence in situ hybridization (FISH), Methods Mol. Biol., 2019, vol. 1885, pp. 129–137. https://doi.org/10.1007/978-1-4939-8889-1_9

Article  CAS  PubMed  Google Scholar 

Prudent, E. and Raoult, D., Fluorescence in situ hybridization, a complementary molecular tool for the clinical diagnosis of infectious diseases by intracellular and fastidious bacteria, FEMS Microbiol. Rev., 2019, vol. 43, no. 1, pp. 88–107. https://doi.org/10.1093/femsre/fuy040

Article  CAS  PubMed  Google Scholar 

O’Connor, S.J.M., Turner, K.R., and Barrans, S.L., Practical application of fluorescent in situ hybridization techniques in clinical diagnostic laboratories, Methods Mol. Biol., 2020, vol. 2148, pp. 35–70. https://doi.org/10.1007/978-1-0716-0623-0_3

Article  CAS  PubMed  Google Scholar 

Chrzanowska, N.M., Kowalewski, J., and Lewandowska, M.A., Use of fluorescence in situ hybridization (FISH) in diagnosis and tailored therapies in solid tumors, Molecules, 2020, vol. 25, no. 8. https://doi.org/10.3390/molecules25081864

Zirkel, A. and Papantonis, A., Detecting circular RNAs by RNA fluorescence in situ hybridization, Methods Mol. Biol., 2018, vol. 1724, pp. 69–75. https://doi.org/10.1007/978-1-4939-7562-4_6

Article  CAS  PubMed  Google Scholar 

Uhl, G.R., In situ hybridization: quantitation using radiolabeled hybridization probes, Methods Enzymol., 1989, vol. 168, pp. 741–752. https://doi.org/10.1016/0076-6879(89)68055-x

Article  CAS  PubMed  Google Scholar 

Wang, F., Flanagan, J., Su, N., et al., RNAscope: a novel in situ RNA analysis platform for formalin-fixed, paraffin-embedded tissues, J. Mol. Diagn., 2012, vol. 14, no. 1, pp. 22–29. https://doi.org/10.1016/j.jmoldx.2011.08.002

Article  CAS  PubMed  PubMed Central  Google Scholar 

Itzkovitz, S. and van Oudenaarden, A., Validating transcripts with probes and imaging technology, Nat. Methods, 2011, vol. 8, no. 4, pp. S12–S19. https://doi.org/10.1038/nmeth.1573

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kang, H., Sheng, L., and Yongsheng, C., HuluFISH non-denaturing in situ detection of genomic DNA opened by CRISPR-Cas9 nickase and exonuclease, bioRxiv, 2021. https://doi.org/10.1101/2021.12.23.473974

Asp, M., Bergenstråhle, J., and Lundeberg, J., Spatially resolved transcriptomes—next generation tools for tissue exploration, BioEssays, 2020, vol. 42, no. 10. https://doi.org/10.1002/bies.201900221

Speel, E.J., Hopman, A.H., and Komminoth, P., Tyramide signal amplification for DNA and mRNA in situ hybridization, Methods Mol. Biol., 2006, vol. 326, pp. 33–60. https://doi.org/10.1385/1-59745-007-3:33

Article  CAS  PubMed  Google Scholar 

Seroussi, E., Knytl, M., Pitel, F., et al., Avian expression patterns and genomic mapping implicate leptin in digestion and TNF in immunity, suggesting that their interacting adipokine role has been acquired only in mammals, Int. J. Mol. Sci., 2019, vol. 20, no. 18. https://doi.org/10.3390/ijms20184489

Choi, H.M.T., Schwarzkopf, M., Fornace, M.E., et al., Third-generation in situ hybridization chain reaction: multiplexed, quantitative, sensitive, versatile, robust, Development, 2018, vol. 145, no. 12. https://doi.org/10.1242/dev.165753

Jeong, W., Bae, H., Lim, W., et al., Dicer1, AGO3, and AGO4 microRNA machinery genes are differentially expressed in developing female reproductive organs and overexpressed in cancerous ovaries of chickens, J. Anim. Sci., 2017, vol. 95, no. 11, pp. 4857–4868. https://doi.org/10.2527/jas2017.1846

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hoy, J., Nishimura, H., Mehalic, T., et al., Ontogeny of renin gene expression in the chicken, Gallus gallus, Gen. Comp. Endocrinol., 2020, vol. 296. https://doi.org/10.1016/j.ygcen.2020.113533

Ogata, M., Hayashi, G., Ichiu, A., et al., l-DNA-tagged fluorescence in situ hybridization for highly sensitive imaging of RNAs in single cells, Org. Biomol. Chem., 2020, vol. 18, no. 40, pp. 8084–8088. https://doi.org/10.1039/d0ob01635g

Article  CAS  PubMed  Google Scholar 

Veselinyová, D., Mašlanková, J., Kalinová, K., et al., Selected in situ hybridization methods: principles and application, Molecules, 2021, vol. 26, no. 13. https://doi.org/10.3390/molecules26133874

Schwarzkopf, M., Choi, H.M.T., and Pierce, N.A., Multiplexed quantitative in situ hybridization for mammalian cells on a slide: qHCR and dHCR imaging (v3.0), Methods Mol. Biol., 2020, vol. 2148, pp. 143–156. https://doi.org/10.1007/978-1-0716-0623-0_9

Article  CAS  PubMed  Google Scholar 

Tsuneoka, Y. and Funato, H., Modified in situ hybridization chain reaction using short hairpin DNAs, Front. Mol. Neurosci., 2020, vol. 13. https://doi.org/10.3389/fnmol.2020.00075

Baena-Del Valle, J.A., Zheng, Q., Hicks, J.L., et al., Rapid loss of RNA detection by in situ hybridization in stored tissue blocks and preservation by cold storage of unstained slides, Am. J. Clin. Pathol., 2017, vol. 148, no. 5, pp. 398–415. https://doi.org/10.1093/ajcp/aqx094

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xiao, L., Labaer, J., and Guo, J., Highly sensitive and multiplexed in situ RNA profiling with cleavable fluorescent tyramide, Cells, 2021, vol. 10, no. 6. https://doi.org/10.3390/cells10061277

Alon, S., Goodwin, D.R., Sinha, A., et al., Expansion sequencing: spatially precise in situ transcriptomics in intact biological systems, Science, 2021, vol. 371, no. 6528. https://doi.org/10.1126/science.aax2656

Lee, J.H., Daugharthy, E.R., Scheiman, J., et al., Fluorescent in situ sequencing (FISSEQ) of RNA for gene expression profiling in intact cells and tissues, Nat. Protoc., 2015, vol. 10, no. 3, pp. 442–458. https://doi.org/10.1038/nprot.2014.191

Article  CAS  PubMed  PubMed Central  Google Scholar 

Payne, A.C., Chiang, Z.D., Reginato, P.L., et al., In situ genome sequencing resolves DNA sequence and structure in intact biological samples, Science, 2021, vol. 371, no. 6532. https://doi.org/10.1126/science.aay3446

Kishi, J.Y., Liu, N., West, E.R., et al., Light-Seq: light-directed in situ barcoding of biomolecules in fixed cells and tissues for spatially indexed sequencing, Nat. Methods, 2022, vol. 19, no. 11, pp. 1393–1402. https://doi.org/10.1038/s41592-022-01604-1

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pandit, K., Petrescu, J., Cuevas, M., et al., An open-source toolkit for repurposing Illumina sequencing systems as versatile fluidics and imaging platforms, Sci. Rep., 2022, vol. 12, no. 1, p. 5081. https://doi.org/10.1038/s41598-022-08740-w

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Williams, C.G., Lee, H.J., Asatsuma, T., et al., An introduction to spatial transcriptomics for biomedical research, Genome Med., 2022, vol. 14, no. 1, p. 68. https://doi.org/10.1186/s13073-022-01075-1

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sicherre, E., Favier, A.L., Riccobono, D., and Nikovics, K., Non-specific binding, a limitation of the immunofluorescence method to study macrophages in situ, Genes, 2021, vol. 12, no. 5. https://doi.org/10.3390/genes12050649

Skaugen, J.M., Seethala, R.R., Chiosea, S.I., et al., Evaluation of NR4A3 immunohistochemistry (IHC) and fluorescence in situ hybridization and comparison with DOG1 IHC for FNA diagnosis of acinic cell carcinoma, Cancer Cytopathol., 2021, vol. 129, no. 2, pp. 104–113. https://doi.org/10.1002/cncy.22338

Article  CAS  PubMed  Google Scholar 

Atout, S., Shurrab, S., and Loveridge, C., Evaluation of the suitability of RNAscope as a technique to measure gene expression in clinical diagnostics: a systematic review, Mol. Diagn. Ther., 2022, vol. 26, no. 1, pp. 19–37. https://doi.org/10.1007/s40291-021-00570-2

Article  CAS  PubMed  Google Scholar 

Liu, K., Jia, M., and Wong, E.A., Delayed access to feed affects broiler small intestinal morphology and goblet cell ontogeny, Poult. Sci., 2020, vol. 99, no. 11, pp. 5275–5285. https://doi.org/10.1016/j.psj.2020.07.040

Article  CAS  PubMed  PubMed Central  Google Scholar 

Reynolds, K.L., Cloft, S.E., and Wong, E.A., Changes with age in density of goblet cells in the small intestine of broiler chicks, Poult. Sci., 2020, vol. 99, no. 5, pp. 2342–2348. https://doi.org/10.1016/j.psj.2019.12.052

Article  CAS  PubMed  PubMed Central  Google Scholar 

Comments (0)

No login
gif