Xu H, Jiang J, Chen W, Li W, Chen Z. Vascular macrophages in atherosclerosis. J Immunol Res. 2019;2019:4354786. https://doi.org/10.1155/2019/4354786.
Article CAS PubMed PubMed Central Google Scholar
Ronak Delewi, Hayang Yang, John Kastelein. Textbook of Cardiology, Atherosclerosis. https://www.textbookofcardiology.org/wiki/Atherosclerosis
Lenz T, Nicol P, Castellanos MI, Engel LC, Lahmann AL, Alexiou C, Joner M. Small Dimension-Big Impact! Nanoparticle-Enhanced Non-Invasive and Intravascular Molecular Imaging of Atherosclerosis In Vivo: Molecules; 2020. https://doi.org/10.3390/molecules25051029.
Article PubMed PubMed Central Google Scholar
Omran F, Kyrou I, Osman F, Lim VG, Randeva HS, Chatha K. Cardiovascular biomarkers: lessons of the past and prospects for the future. Int J Mol Sci. 2022. https://doi.org/10.3390/ijms23105680.
Article PubMed PubMed Central Google Scholar
Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013;153:1194–217. https://doi.org/10.1016/j.cell.2013.05.039.
Article CAS PubMed PubMed Central Google Scholar
Cho JH, Kim EC, Son Y, Lee DW, Park YS, Choi JH, Cho KH, Kwon KS, Kim JR. CD9 induces cellular senescence and aggravates atherosclerotic plaque formation. Cell Death Differ. 2020;27:2681–96. https://doi.org/10.1038/s41418-020-0537-9.
Article CAS PubMed PubMed Central Google Scholar
Wang H, Fu H, Zhu R, Wu X, Ji X, Li X, Jiang H, Lin Z, Tang X, Sun S, et al. BRD4 contributes to LPS-induced macrophage senescence and promotes progression of atherosclerosis-associated lipid uptake. Aging (Albany NY). 2020;12:9240–59. https://doi.org/10.18632/aging.103200.
Article CAS PubMed Google Scholar
Childs BG, Baker DJ, Wijshake T, Conover CA, Campisi J, van Deursen JM. Senescent intimal foam cells are deleterious at all stages of atherosclerosis. Science. 2016;354:472–7. https://doi.org/10.1126/science.aaf6659.
Article CAS PubMed PubMed Central Google Scholar
Cao DJ. Macrophages in cardiovascular homeostasis and disease. Circulation. 2018;138:2452–5. https://doi.org/10.1161/CIRCULATIONAHA.118.035736.
Article PubMed PubMed Central Google Scholar
Gonzalez-Navarro H, Abu Nabah YN, Vinue A, Andres-Manzano MJ, Collado M, Serrano M, Andres V. p19(ARF) deficiency reduces macrophage and vascular smooth muscle cell apoptosis and aggravates atherosclerosis. J Am Coll Cardiol. 2010;55:2258–68. https://doi.org/10.1016/j.jacc.2010.01.026.
Article CAS PubMed Google Scholar
Khanna AK. Enhanced susceptibility of cyclin kinase inhibitor p21 knockout mice to high fat diet induced atherosclerosis. J Biomed Sci. 2009;16:66. https://doi.org/10.1186/1423-0127-16-66.
Article CAS PubMed PubMed Central Google Scholar
Jin H, Goossens P, Juhasz P, Eijgelaar W, Manca M, Karel JMH, Smirnov E, Sikkink C, Mees BME, Waring O, et al. Integrative multiomics analysis of human atherosclerosis reveals a serum response factor-driven network associated with intraplaque hemorrhage. Clin Transl Med. 2021;11: e458. https://doi.org/10.1002/ctm2.458.
Article CAS PubMed PubMed Central Google Scholar
Lee K, Santibanez-Koref M, Polvikoski T, Birchall D, Mendelow AD, Keavney B. Increased expression of fatty acid binding protein 4 and leptin in resident macrophages characterises atherosclerotic plaque rupture. Atherosclerosis. 2013;226:74–81. https://doi.org/10.1016/j.atherosclerosis.2012.09.037.
Article CAS PubMed PubMed Central Google Scholar
Ayari H, Bricca G. Identification of two genes potentially associated in iron-heme homeostasis in human carotid plaque using microarray analysis. J Biosci. 2013;38:311–5. https://doi.org/10.1007/s12038-013-9310-2.
Article CAS PubMed Google Scholar
Avelar RA, Ortega JG, Tacutu R, Tyler EJ, Bennett D, Binetti P, Budovsky A, Chatsirisupachai K, Johnson E, Murray A, et al. A multidimensional systems biology analysis of cellular senescence in aging and disease. Genome Biol. 2020;21:91. https://doi.org/10.1186/s13059-020-01990-9.
Article CAS PubMed PubMed Central Google Scholar
Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, Speed TP. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics. 2003;4:249–64. https://doi.org/10.1093/biostatistics/4.2.249.
Engebretsen S, Bohlin J. Statistical predictions with glmnet. Clin. Epigenetics. 2019;11:123. https://doi.org/10.1186/s13148-019-0730-1.
Lin X, Li C, Zhang Y, Su B, Fan M, Wei H. Selecting feature subsets based on SVM-RFE and the overlapping ratio with applications in bioinformatics. Molecules. 2017. https://doi.org/10.3390/molecules23010052.
Article PubMed PubMed Central Google Scholar
RColorBrewer S, L.M. Package ‘randomforest’. https://cran.r-project.org/web/packages/randomForest/index.html 2018.
Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102:15545–50. https://doi.org/10.1073/pnas.0506580102.
Article CAS PubMed Google Scholar
Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez JC, Muller M. pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics. 2011;12:77. https://doi.org/10.1186/1471-2105-12-77.
Article PubMed PubMed Central Google Scholar
Harrell FE Jr. R package "rms": Regression modeling strategies. https://cran.r-project.org/web/packages/rms/index.html 2022.
Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat Biotechnol. 2018;36:411–20. https://doi.org/10.1038/nbt.4096.
Article CAS PubMed PubMed Central Google Scholar
Andreatta M, Carmona SJ. UCell: Robust and scalable single-cell gene signature scoring. Comput Struct Biotechnol J. 2021;19:3796–8. https://doi.org/10.1016/j.csbj.2021.06.043.
Article CAS PubMed PubMed Central Google Scholar
Zhou J, Werstuck GH, Lhotak S, de Koning AB, Sood SK, Hossain GS, Moller J, Ritskes-Hoitinga M, Falk E, Dayal S, et al. Association of multiple cellular stress pathways with accelerated atherosclerosis in hyperhomocysteinemic apolipoprotein E-deficient mice. Circulation. 2004;110:207–13. https://doi.org/10.1161/01.CIR.0000134487.51510.97.
Article CAS PubMed Google Scholar
Paigen B, Morrow A, Holmes PA, Mitchell D, Williams RA. Quantitative assessment of atherosclerotic lesions in mice. Atherosclerosis. 1987;68:231–40. https://doi.org/10.1016/0021-9150(87)90202-4.
Article CAS PubMed Google Scholar
Zhao Q, Li S, Li N, Yang X, Ma S, Yang A, Zhang H, Yang S, Mao C, Xu L, et al. miR-34a Targets HDAC1-regulated H3K9 acetylation on lipid accumulation induced by homocysteine in foam cells. J Cell Biochem. 2017;118:4617–27. https://doi.org/10.1002/jcb.26126.
Article CAS PubMed Google Scholar
Itahana K, Campisi J, Dimri GP. Methods to detect biomarkers of cellular senescence: the senescence-associated beta-galactosidase assay. Methods Mol Biol. 2007;371:21–31. https://doi.org/10.1007/978-1-59745-361-5_3.
Article CAS PubMed Google Scholar
Ovadya Y, Krizhanovsky V. Senescent cells: SASPected drivers of age-related pathologies. Biogerontology. 2014;15:627–42. https://doi.org/10.1007/s10522-014-9529-9.
Article CAS PubMed Google Scholar
Ye Z, Wang XK, Lv YH, Wang X, Cui YC. The integrated analysis identifies three critical genes as novel diagnostic biomarkers involved in immune infiltration in atherosclerosis. Front Immunol. 2022;13: 905921. https://doi.org/10.3389/fimmu.2022.905921.
Article CAS PubMed PubMed Central Google Scholar
Jia Q, Wu W, Wang Y, Alexander PB, Sun C, Gong Z, Cheng JN, Sun H, Guan Y, Xia X, et al. Local mutational diversity drives intratumoral immune heterogeneity in non-small cell lung cancer. Nat Commun. 2018;9:5361. https://doi.org/10.1038/s41467-018-07767-w.
Article CAS PubMed PubMed Central Google Scholar
Jeon S, Kim TK, Jeong SJ, Jung IH, Kim N, Lee MN, Sonn SK, Seo S, Jin J, Kweon HY, et al. Anti-inflammatory actions of soluble ninjurin-1 ameliorate atherosclerosis. Circulation. 2020;142:1736–51. https://doi.org/10.1161/CIRCULATIONAHA.120.046907.
Article CAS PubMed Google Scholar
Liu Y, Li M, Lv X, Bao K, Yu Tian X, He L, Shi L, Zhu Y, Ai D. Yes-associated protein targets the transforming growth factor beta pathway to mediate high-fat/high-sucrose diet-induced arterial stiffness. Circ Res. 2022;130:851–67. https://doi.org/10.1161/CIRCRESAHA.121.320464.
Comments (0)