Aragão-Gomes L, Andrea-Hipp S, Rijal-Upadhaya A, Balakrishnan K, Ospitalieri S, Koper MJ, Largo-Barrientos P, Uytterhoeven V, Reichwald J, Rabe S, Vandenberghe R, Giudici C, Willem M, Staufenbiel M, Rudolf-Thal D (2023) Aβ-induced acceleration of Alzheimer-related τ-pathology spreading and its association with prion protein. Acta Neuropathol 138:17. https://doi.org/10.1007/s00401-019-02053-5
Bassil R, Shields K, Granger K, Zein I, Ng S, Chih B (2021) Improved modeling of human AD with an automated culturing platform for iPSC neurons, astrocytes and microglia. Nat Commun 12:5220. https://doi.org/10.1038/s41467-021-25344-6
Article CAS PubMed PubMed Central Google Scholar
Beckmann ND, Lin W-J, Wang M, Cohain AT, Charney AW, Wang P, Ma W, Wang Y-C, Jiang C, Audrain M, Comella PH, Fakira AK, Hariharan SP, Belbin GM, Girdhar K, Levey AI, Seyfried NT, Dammer EB, Tu Z, Ehrlich ME, Zhang B, Salton SR, Schadt EE (2020) Multiscale causal networks identify VGF as a key regulator of Alzheimer’s disease. Nat Commun 12:18. https://doi.org/10.1038/s41467-020-17405-z
Bennett RE, Devos SL, Dujardin S, Corjuc B, Gor R, Gonzalez J, Roe AD, Frosch MP, Pitstick R, Carlson GA, Hyman BT (2017) Enhanced Tau aggregation in the presence of amyloid β. Am J Pathol. https://doi.org/10.1016/j.ajpath.2017.03.011
Article PubMed PubMed Central Google Scholar
Benzing WC, Brady DR, Mufson EJ, Armstrong DM (1993) Evidence that transmitter-containing dystrophic neurites precede those containing paired helical filaments within senile plaques in the entorhinal cortex of nondemented elderly and Alzheimer’s disease patients. Brain Res 619:55–68. https://doi.org/10.1016/0006-8993(93)91595-j
Article CAS PubMed Google Scholar
Blanchard V, Moussaoui S, Czech C, Touchet N, Bonici B, Planche M, Canton T, Jedidi I, Gohin M, Wirths O, Bayer TA, Langui D, Duyckaerts C, Tremp G, Pradier L (2003) Time sequence of maturation of dystrophic neurites associated with Aβ deposits in APP/PS1 transgenic mice. Exp Neurol 184:247–263. https://doi.org/10.1016/s0014-4886(03)00252-8
Article CAS PubMed Google Scholar
Blazquez-Llorca L, Valero-Freitag S, Rodrigues EF, Merchán-Pérez Á, Rodríguez JR, Dorostkar MM, DeFelipe J, Herms J (2017) High plasticity of axonal pathology in Alzheimer’s disease mouse models. Acta Neuropathol Commun 5:14. https://doi.org/10.1186/s40478-017-0415-y
Article CAS PubMed PubMed Central Google Scholar
Boon BDC, Bulk M, Jonker AJ, Morrema THJ, van den Berg E, Popovic M, Walter J, Kumar S, van der Lee SJ, Holstege H, Zhu X, Van Nostrand WE, Natté R, van der Weerd L, Bouwman FH, van de Berg WDJ, Rozemuller AJM, Hoozemans JJM (2020) The coarse-grained plaque: a divergent Aβ plaque-type in early-onset Alzheimer’s disease. Acta Neuropathol 140:811–830. https://doi.org/10.1007/s00401-020-02198-8
Article CAS PubMed PubMed Central Google Scholar
Boutajangout A, Authelet M, Blanchard V, Touchet N, Tremp G, Pradier L, Brion J-P (2004) Characterisation of cytoskeletal abnormalities in mice transgenic for wild-type human tau and familial Alzheimer’s disease mutants of APP and presenilin-1. Neurobiol Dis 15:47–60. https://doi.org/10.1016/j.nbd.2003.09.007
Article CAS PubMed Google Scholar
Brendza RP, Bacskai BJ, Cirrito JR, Simmons KA, Skoch JM, Klunk WE, Mathis CA, Bales KR, Paul SM, Hyman BT, Holtzman DM (2005) Anti-Abeta antibody treatment promotes the rapid recovery of amyloid-associated neuritic dystrophy in PDAPP transgenic mice. J Clin Invest 115:428–433. https://doi.org/10.1172/JCI23269
Article CAS PubMed PubMed Central Google Scholar
Busch SA, Silver J (2007) The role of extracellular matrix in CNS regeneration This review comes from a themed issue on Development Edited by Ben Barres and Mu-Ming Poo. Curr Opin Neurobiol 17:120–127. https://doi.org/10.1016/j.conb.2006.09.004
Article CAS PubMed Google Scholar
Cai Y, Xiong K, Zhang X-M, Cai H, Luo X-G, Feng J-C, Clough RW, Struble RG, Patrylo PR, Chu Y, Kordower JH, Yan X-X (2010) β-Secretase-1 elevation in aged monkey and Alzheimer’s disease human cerebral cortex occurs around the vasculature in partnership with multisystem axon terminal pathogenesis and β-amyloid accumulation. Eur J Neurosci 32:1223–1238. https://doi.org/10.1111/j.1460-9568.2010.07376.x
Article PubMed PubMed Central Google Scholar
Chen WT, Lu A, Craessaerts K, Pavie B, Sala Frigerio C, Corthout N, Qian X, Laláková J, Kühnemund M, Voytyuk I, Wolfs L, Mancuso R, Salta E, Balusu S, Snellinx A, Munck S, Jurek A, Fernandez Navarro J, Saido TC, Huitinga I, Lundeberg J, Fiers M, De Strooper B (2020) Spatial transcriptomics and in situ sequencing to study Alzheimer’s Disease. Cell 182:976-991.e19. https://doi.org/10.1016/J.CELL.2020.06.038
Article CAS PubMed Google Scholar
Chung D, Shum A, Caraveo G (2020) GAP-43 and BASP1 in Axon regeneration: implications for the treatment of neurodegenerative diseases. Front Cell Dev Biol. https://doi.org/10.3389/FCELL.2020.567537
Article PubMed PubMed Central Google Scholar
Cras P, Kawai M, Lowery D, Gonzalez-DeWhitt P, Greenberg B, Perry G (1991) Senile plaque neurites in Alzheimer disease accumulate amyloid precursor protein. Proc Natl Acad Sci U S A 88:7552–7556. https://doi.org/10.1073/pnas.88.17.7552
Article CAS PubMed PubMed Central Google Scholar
Crook R, Verkkoniemi A, Perez-Tur J, Mehta N, Baker M, Houlden H, Farrer M, Hutton M, Lincoln S, Hardy J, Gwinn K, Somer M, Paetau A, Kalimo H, Ylikoski R, Pöyhönen M, Kucera S, Haltia M (1998) A variant of Alzheimer’s disease with spastic paraparesis and unusual plaques due to deletion of exon 9 of presenilin 1. Nat Med 4:452–455. https://doi.org/10.1038/nm0498-452
Article CAS PubMed Google Scholar
D’Andrea MR, Nagele RG, Wang H-Y, Peterson PA, Lee DHS (2001) Evidence that neurones accumulating amyloid can undergo lysis to form amyloid plaques in Alzheimer’s disease. Histopathology 38:120–134. https://doi.org/10.1046/j.1365-2559.2001.01082.x
Dewitt DA, Silver J (1996) Regenerative failure: a potential mechanism for neuritic dystrophy in Alzheimer’s disease. Exp Neurol 142:103–110. https://doi.org/10.1006/EXNR.1996.0182
Article CAS PubMed Google Scholar
Dickson DW, Crystal HA, Mattiace LA, Masur DM, Blau AD, Davies P, Yen S-H, Aronson MK (1992) Identification of normal and pathological aging in prospectively studied nondemented elderly humans. Neurobiol Aging 13:179–189. https://doi.org/10.1016/0197-4580(92)90027-u
Article CAS PubMed Google Scholar
Dickson TC, King CE, McCormack GH, Vickers JC (1999) Neurochemical diversity of dystrophic neurites in the early and late stages of Alzheimer’s Disease. Exp Neurol 156:100–110. https://doi.org/10.1006/exnr.1998.7010
Article CAS PubMed Google Scholar
Dickson TC, Vickers JC (2001) The morphological phenotype of β-amyloid plaques and associated neuritic changes in Alzheimer’s disease. Neuroscience 105:99–107. https://doi.org/10.1016/s0306-4522(01)00169-5
Article CAS PubMed Google Scholar
Duyckaerts C, Delaère P, Poulain V, Brion J-P, Hauw J-J (1988) Does amyloid precede paired helical filaments in the senile plaque? A study of 15 cases with graded intellectual status in aging and Alzheimer disease. Neurosci Lett 91:354–359. https://doi.org/10.1016/0304-3940(88)90706-9
Article CAS PubMed Google Scholar
Fiala JC, Feinberg M, Peters A, Barbas H (2007) Mitochondrial degeneration in dystrophic neurites of senile plaques may lead to extracellular deposition of fine filaments. Brain Struct Funct 212:195–207. https://doi.org/10.1007/s00429-007-0153-1
Fitch MT, Silver J (2008) CNS injury, glial scars, and inflammation: Inhibitory extracellular matrices and regeneration failure. Exp Neurol 209:294–301. https://doi.org/10.1016/J.EXPNEUROL.2007.05.014
Article CAS PubMed Google Scholar
Gaudreault SB, Dea D, Poirier J (2004) Increased caveolin-1 expression in Alzheimer’s disease brain. Neurobiol Aging 25:753–759. https://doi.org/10.1016/J.NEUROBIOLAGING.2003.07.004
Article CAS PubMed Google Scholar
Ghoshal N, García-Sierra F, Wuu J, Leurgans S, Bennett DA, Berry RW, Binder LI (2002) Tau Conformational Changes Correspond to Impairments of Episodic Memory in Mild Cognitive Impairment and Alzheimer’s Disease. Exp Neurol. https://doi.org/10.1006/exnr.2002.8014
Gowrishankar S, Yuan P, Wu Y, Schrag M, Paradise S, Grutzendler J, De Camilli P, Ferguson SM (2015) Massive accumulation of luminal protease-deficient axonal lysosomes at Alzheimer’s disease amyloid plaques. Proc Natl Acad Sci U S A 112:E3699–E3708. https://doi.org/10.1073/pnas.1510329112
Article CAS PubMed PubMed Central Google Scholar
Haga S, Akai K, Ishii T (1989) Demonstration of microglial cells in and around senile (neuritic) plaques in the Alzheimer brain. Acta Neuropathol 77:569–575. https://doi.org/10.1007/bf00687883
Article CAS PubMed Google Scholar
Haroutunian V (1998) Regional distribution of neuritic plaques in the nondemented elderly and subjects with very mild alzheimer disease. Arch Neurol 55:1185–1191. https://doi.org/10.1001/archneur.55.9.1185
Article CAS PubMed Google Scholar
He Z, Guo JL, McBride JD, Narasimhan S, Kim H, Changolkar L, Zhang B, Gathagan RJ, Yue C, Dengler C, Stieber A, Nitla M, Coulter DA, Abel T, Brunden KR, Trojanowski JQ, Lee VMY (2018) Amyloid-β plaques enhance Alzheimer’s brain tau-seeded pathologies by facilitating neuritic plaque tau aggregation. Nat Med 24:29–38. https://doi.org/10.1038/nm.4443
Comments (0)