Watkins EJ. Overview of breast cancer. J Am Acad PAs. 2019;32(10):13–7.
Hon JDC, et al. Breast cancer molecular subtypes: from TNBC to QNBC. Am J Cancer Res. 2016;6(9):1864.
CAS PubMed PubMed Central Google Scholar
Das V, et al. The basics of epithelial–mesenchymal transition (EMT): a study from a structure, dynamics, and functional perspective. J Cell Physiol. 2019;234(9):14535–55.
Article CAS PubMed Google Scholar
Yeung KT, Yang J. Epithelial–mesenchymal transition in tumor metastasis. Mol Oncol. 2017;11(1):28–39.
Georgakopoulos-Soares I, et al. EMT factors and metabolic pathways in cancer. Front Oncol. 2020;10:499.
Article PubMed PubMed Central Google Scholar
Kang H, et al. Role of metabolic reprogramming in epithelial–mesenchymal transition (EMT). Int J Mol Sci. 2019;20(8):2042.
Article CAS PubMed PubMed Central Google Scholar
Sciacovelli M, Frezza C. Metabolic reprogramming and epithelial-to-mesenchymal transition in cancer. FEBS J. 2017;284(19):3132–44.
Article CAS PubMed PubMed Central Google Scholar
Li M, et al. Biological role of metabolic reprogramming of cancer cells during epithelial–mesenchymal transition. Oncol Rep. 2019;41(2):727–41.
Najafi M, Farhood B, Mortezaee K. Cancer stem cells (CSCs) in cancer progression and therapy. J Cell Physiol. 2019;234(6):8381–95.
Article CAS PubMed Google Scholar
Kuşoğlu A, Avcı ÇB. Cancer stem cells: a brief review of the current status. Gene. 2019;681:80–5.
Chen K, et al. The metabolic flexibility of quiescent CSC: implications for chemotherapy resistance. Cell Death Dis. 2021;12(9):1–12.
Tuy K, Rickenbacker L, Hjelmeland AB. Reactive oxygen species produced by altered tumor metabolism impacts cancer stem cell maintenance. Redox Biol. 2021;44:101953.
Article CAS PubMed PubMed Central Google Scholar
Lendeckel U, Wolke C. Redox-regulation in cancer stem cells. Biomedicines. 2022;10(10):2413.
Article CAS PubMed PubMed Central Google Scholar
Dayem AA, et al. Role of oxidative stress in stem, cancer, and cancer stem cells. Cancers. 2010;2(2):859–84.
Article PubMed PubMed Central Google Scholar
Arfin S, et al. Oxidative stress in cancer cell metabolism. Antioxidants. 2021;10(5):642.
Article CAS PubMed PubMed Central Google Scholar
Zhong H, Yin H. Role of lipid peroxidation derived 4-hydroxynonenal (4-HNE) in cancer: focusing on mitochondria. Redox Biol. 2015;4:193–9.
Article CAS PubMed Google Scholar
Milkovic L, Zarkovic N, Saso L. Controversy about pharmacological modulation of Nrf2 for cancer therapy. Redox Biol. 2017;12:727–32.
Article CAS PubMed PubMed Central Google Scholar
Bellezza I, et al. Nrf2-Keap1 signaling in oxidative and reductive stress. Biochim Biophys Acta Mol Cell Res. 2018;1865(5):721–33.
Article CAS PubMed Google Scholar
Li Y-P, et al. 4-Hydroxynonenal promotes growth and angiogenesis of breast cancer cells through HIF-1α stabilization. Asian Pac J Cancer Prev. 2015;15(23):10151–6.
Mittal V. Epithelial mesenchymal transition in tumor metastasis. Annu Rev Pathol. 2018;13(1):395–412.
Article CAS PubMed Google Scholar
Pastushenko I, Blanpain C. EMT transition states during tumor progression and metastasis. Trends Cell Biol. 2019;29(3):212–26.
Article CAS PubMed Google Scholar
Loh C-Y, et al. The E-cadherin and N-cadherin switch in epithelial-to-mesenchymal transition: signaling, therapeutic implications, and challenges. Cells. 2019;8(10):1118.
Article CAS PubMed PubMed Central Google Scholar
Wu Y, Sarkissyan M, Vadgama JV. Epithelial–mesenchymal transition and breast cancer. J Clin Med. 2016;5(2):13.
Article PubMed PubMed Central Google Scholar
Felipe Lima J, et al. EMT in breast carcinoma—a review. J Clin Med. 2016;5(7):65.
Article PubMed PubMed Central Google Scholar
Puisieux A, Brabletz T, Caramel J. Oncogenic roles of EMT-inducing transcription factors. Nat Cell Biol. 2014;16(6):488–94.
Article CAS PubMed Google Scholar
Wu H-T, et al. Oncogenic functions of the EMT-related transcription factor ZEB1 in breast cancer. J Transl Med. 2020;18(1):1–10.
Bushweller JH. Targeting transcription factors in cancer—from undruggable to reality. Nat Rev Cancer. 2019;19(11):611–24.
Article CAS PubMed PubMed Central Google Scholar
Francou A, Anderson KV. The epithelial-to-mesenchymal transition (EMT) in development and cancer. Annu Rev Cancer Biol. 2020;4:197.
Ye X, et al. Upholding a role for EMT in breast cancer metastasis. Nature. 2017;547(7661):E1–3.
Article CAS PubMed PubMed Central Google Scholar
van Staalduinen J, et al. Epithelial–mesenchymal-transition-inducing transcription factors: New targets for tackling chemoresistance in cancer? Oncogene. 2018;37(48):6195–211.
Fischer KR, et al. Epithelial to mesenchymal transition is not required for breast to lung metastasis but contributes to chemoresistance. Cancer Res. 2015;75(15_Supplement):4721–4721.
Zhu J, Thompson CB. Metabolic regulation of cell growth and proliferation. Nat Rev Mol Cell Biol. 2019;20(7):436–50.
Article CAS PubMed PubMed Central Google Scholar
Lüönd F, et al. Distinct contributions of partial and full EMT to breast cancer malignancy. Dev Cell. 2021;56(23):3203–21.
Liu Y, et al. Integrating metabolic reprogramming and metabolic imaging to predict breast cancer therapeutic responses. Trends Endocrinol Metab. 2021;32(10):762–75.
Article CAS PubMed Google Scholar
Lee SY et al. Oncogenic metabolism acts as a prerequisite step for induction of cancer metastasis and cancer stem cell phenotype. Oxid Med Cell Longev 2018;2018.
Wei Z, et al. Metabolism of amino acids in cancer. Front Cell Dev Biol. 2021;8:603837.
Article PubMed PubMed Central Google Scholar
Lukey MJ, Katt WP, Cerione RA. Targeting amino acid metabolism for cancer therapy. Drug Discov Today. 2017;22(5):796–804.
Article CAS PubMed Google Scholar
Halldorsson S, et al. Metabolic re-wiring of isogenic breast epithelial cell lines following epithelial to mesenchymal transition. Cancer Lett. 2017;396:117–29.
Article CAS PubMed Google Scholar
Li T, Le A, Glutamine metabolism in cancer. Heterog Cancer Metab. 2018;13–32.
Bott AJ, Maimouni S, Zong W-X. The pleiotropic effects of glutamine metabolism in cancer. Cancers. 2019;11(6):770.
Article CAS PubMed PubMed Central Google Scholar
Yang L, Glutaminolysis: a hallmark of cancer metabolism. 2016.
Lee SY, et al. Dlx-2 and glutaminase upregulate epithelial–mesenchymal transition and glycolytic switch. Oncotarget. 2016;7(7):7925.
Article PubMed PubMed Central Google Scholar
Lee SY, et al. Dlx-2 is implicated in TGF-β-and Wnt-induced epithelial–mesenchymal, glycolytic switch, and mitochondrial repression by Snail activation. Int J Oncol. 2015;46(4):1768–80.
Comments (0)