Application of patient-derived induced pluripotent stem cells and organoids in inherited retinal diseases

Mawatari G, et al. Clinical and genetic characteristics of 14 patients from 13 Japanese families with RPGR-associated retinal disorder: report of eight novel variants. Hum Genome Var. 2019;6:34.

Article  PubMed  PubMed Central  Google Scholar 

Gersch J, et al. Investigation of structural alterations in inherited retinal diseases: a quantitative SD-OCT-analysis of retinal layer thicknesses in light of underlying genetic mutations. Int J Mol Sci. 2022;23(24):16007.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shen RJ, et al. Consanguinity-based analysis of exome sequencing yields likely genetic causes in patients with inherited retinal dystrophy. Orphanet J Rare Dis. 2021;16(1):278.

Article  PubMed  PubMed Central  Google Scholar 

Wright AF, et al. Photoreceptor degeneration: genetic and mechanistic dissection of a complex trait. Nat Rev Genet. 2010;11(4):273–84.

Article  CAS  PubMed  Google Scholar 

Tsipi M, et al. Genomic screening of ABCA4 and array CGH analysis underline the genetic variability of Greek patients with inherited retinal diseases. Meta Gene. 2016;8:37–43.

Article  PubMed  PubMed Central  Google Scholar 

Villanueva-Mendoza C, et al. The genetic landscape of inherited retinal diseases in a Mexican cohort: genes, mutations and phenotypes. Genes. 2021;12(11):1824.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Veleri S, et al. Biology and therapy of inherited retinal degenerative disease: insights from mouse models. Dis Model Mech. 2015;8(2):109–29.

Article  PubMed  PubMed Central  Google Scholar 

Onos KD, et al. Toward more predictive genetic mouse models of Alzheimer’s disease. Brain Res Bull. 2016;122:1–11.

Article  CAS  PubMed  Google Scholar 

Graziotto JJ, et al. Three gene-targeted mouse models of RNA splicing factor RP show late-onset RPE and retinal degeneration. Invest Ophthalmol Vis Sci. 2011;52(1):190–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lu B, et al. Cell transplantation to arrest early changes in an ush2a animal model. Invest Ophthalmol Vis Sci. 2010;51(4):2269–76.

Article  PubMed  Google Scholar 

Garanto A, et al. Unexpected CEP290 mRNA splicing in a humanized knock-in mouse model for Leber congenital amaurosis. PLoS ONE. 2013;8(11):e79369.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Valdes-Sanchez L, et al. Retinal pigment epithelium degeneration caused by aggregation of PRPF31 and the role of HSP70 family of proteins. Mol Med. 2019;26(1):1.

Article  PubMed  PubMed Central  Google Scholar 

Wei M, Li S, Le W. Nanomaterials modulate stem cell differentiation: biological interaction and underlying mechanisms. J Nanobiotechnol. 2017;15(1):75.

Article  Google Scholar 

Shi Y, et al. Induced pluripotent stem cell technology: a decade of progress. Nat Rev Drug Discov. 2017;16(2):115–30.

Article  CAS  PubMed  Google Scholar 

Capetian P, et al. Plasmid-based generation of induced neural stem cells from adult human fibroblasts. Front Cell Neurosci. 2016;10:245.

Article  PubMed  PubMed Central  Google Scholar 

Li J, et al. Generation and staging of human retinal organoids based on self-formed ectodermal autonomous multi-zone system. Front Cell Dev Biol. 2021;9:732382.

Article  PubMed  PubMed Central  Google Scholar 

Gonzalez-Cordero A, et al. Recapitulation of human retinal development from human pluripotent stem cells generates transplantable populations of cone photoreceptors. Stem Cell Rep. 2017;9(3):820–37.

Article  Google Scholar 

Lee CT, et al. 3D brain Organoids derived from pluripotent stem cells: promising experimental models for brain development and neurodegenerative disorders. J Biomed Sci. 2017;24(1):59.

Article  PubMed  PubMed Central  Google Scholar 

Karagiannis P, et al. Induced pluripotent stem cells and their use in human models of disease and development. Physiol Rev. 2019;99(1):79–114.

Article  CAS  PubMed  Google Scholar 

Li Y, Darabi R. Role of epigenetics in cellular reprogramming; from iPSCs to disease modeling and cell therapy. J Cell Biochem. 2022;123(2):147–54.

Article  CAS  PubMed  Google Scholar 

Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76.

Article  CAS  PubMed  Google Scholar 

Takahashi K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131(5):861–72.

Article  CAS  PubMed  Google Scholar 

Jin ZB, et al. Modeling retinal degeneration using patient-specific induced pluripotent stem cells. PLoS ONE. 2011;6(2):e17084.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Saini N, et al. The impact of environmental and endogenous damage on somatic mutation load in human skin fibroblasts. PLoS Genet. 2016;12(10):e1006385.

Article  PubMed  PubMed Central  Google Scholar 

Agu CA, et al. Successful generation of human induced pluripotent stem cell lines from blood samples held at room temperature for up to 48 hr. Stem Cell Reports. 2015;5(4):660–71.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li D, et al. Optimized approaches for generation of integration-free iPSCs from human urine-derived cells with small molecules and autologous feeder. Stem Cell Reports. 2016;6(5):717–28.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Foltz LP, Clegg DO. Patient-derived induced pluripotent stem cells for modelling genetic retinal dystrophies. Prog Retin Eye Res. 2019;68:54–66.

Article  CAS  PubMed  Google Scholar 

Li M, Izpisua Belmonte JC. Organoids - preclinical models of human disease. N Engl J Med. 2019;380(6):569–79.

Article  PubMed  Google Scholar 

Achberger K, et al. Merging organoid and organ-on-a-chip technology to generate complex multi-layer tissue models in a human retina-on-a-chip platform. Elife. 2019;8:e46188.

Article  PubMed  PubMed Central  Google Scholar 

Movio MI, et al. Retinal organoids from human-induced pluripotent stem cells: From studying retinal dystrophies to early diagnosis of Alzheimer’s and Parkinson’s disease. Semin Cell Dev Biol. 2023;144:77–86.

Article  CAS  PubMed  Google Scholar 

Cowan CS, et al. Cell types of the human retina and its organoids at single-cell resolution. Cell. 2020;182(6):1623–40.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim S, et al. Generation, transcriptome profiling, and functional validation of cone-rich human retinal organoids. Proc Natl Acad Sci USA. 2019;116(22):10824–33.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Collin J, et al. Deconstructing retinal organoids: single cell RNA-seq reveals the cellular components of human pluripotent stem cell-derived retina. Stem Cells. 2019;37(5):593–8.

Article  CAS  PubMed  Google Scholar 

Zerti D, et al. Developing a simple method to enhance the generation of cone and rod photoreceptors in pluripotent stem cell-derived retinal organoids. Stem Cells. 2020;38(1):45–51.

Article  CAS  PubMed  Google Scholar 

Liu W, et al. Retinitis pigmentosa: progress in molecular pathology and biotherapeutical strategies. Int J Mol Sci. 2022;23(9).

Dias MF, et al. Molecular genetics and emerging therapies for retinitis pigmentosa: Basic research and clinical perspectives. Prog Retin Eye Res. 2018;63(107):131.

Google Scholar 

Su T, et al. Retinal organoids and microfluidic chip-based approaches to explore the retinitis pigmentosa with USH2A mutations. Front Bioeng Biotechnol. 2022;10:939774.

Article  PubMed  PubMed Central  Google Scholar 

Hassall MM, et al. Analysis of early cone dysfunction in an in vivo model of rod-cone dystrophy. Int J Mol Sci. 2020;21(17):6055.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wood KA, et al. The role of the U5 snRNP in genetic disorders and cancer. Front Genet. 2021;12:636620.

Article 

留言 (0)

沒有登入
gif