Roth GA, Mensah GA, Johnson CO, Addolorato G, Ammirati E, Baddour LM, Barengo NC, Beaton AZ, Benjamin EJ, Benziger CP, et al. Global burden of cardiovascular diseases and risk factors, 1990–2019: update from the GBD 2019 study. J Am Coll Cardiol. 2020;76(25):2982–3021.
Article PubMed PubMed Central Google Scholar
Townsend N, Kazakiewicz D, Lucy Wright F, Timmis A, Huculeci R, Torbica A, Gale CP, Achenbach S, Weidinger F, Vardas P. Epidemiology of cardiovascular disease in Europe. Nat Rev Cardiol. 2022;19(2):133–43.
Patel R, Peesay T, Krishnan V, Wilcox J, Wilsbacher L, Khan SS. Prioritizing the primary prevention of heart failure: measuring, modifying and monitoring risk. Prog Cardiovasc Dis. 2024;82:2–14.
Article PubMed PubMed Central Google Scholar
Visseren FL, Mach F, Smulders YM, Carballo D, Koskinas KC, Bäck M, et al. 2021 ESC guidelines on cardiovascular disease prevention in clinical practice: developed by the task force for cardiovascular disease prevention in clinical practice with representatives of the European Society of Cardiology and 12 medical societies with the special contribution of the European Association of Preventive Cardiology (EAPC). Eur Heart J. 2021;42(34):3227–337.
Collaboration ECR, Group SW. SCORE2 risk prediction algorithms: new models to estimate 10-year risk of cardiovascular disease in Europe. Eur Heart J. 2021;42(25):2439–54.
van Trier TJ, Snaterse M, Boekholdt SM, Scholte Op Reimer WJM, Hageman SHJ, Visseren FLJ, et al. Validation of systematic coronary risk evaluation 2 (SCORE2) and SCORE2-older persons in the EPIC-Norfolk prospective population cohort. Eur J Prev Cardiol. 2024;31(2):182–9.
Matsushita K, Kaptoge S, Hageman SHJ, Sang Y, Ballew SH, Grams ME, et al. Including measures of chronic kidney disease to improve cardiovascular risk prediction by SCORE2 and SCORE2-OP. Eur J Prev Cardiol. 2022;30(1):8–16.
Li L, Pang S, Starnecker F, Mueller-Myhsok B, Schunkert H. Integration of a polygenic score into guideline-recommended prediction of cardiovascular disease. Eur Heart J. 2024;45(20):1843–52.
Article PubMed PubMed Central Google Scholar
Polley KR, Miller MK, Johnson M, Vaughan R, Paton CM, Cooper JA. Metabolic responses to high-fat diets rich in MUFA v. PUFA. Br J Nutr. 2018;120(1):13–22.
Article PubMed CAS Google Scholar
Mititelu M, Lupuliasa D, Neacșu SM, Olteanu G, Busnatu ȘS, Mihai A, et al. Polyunsaturated fatty acids and human health: a key to modern nutritional balance in association with polyphenolic compounds from food sources. Foods. 2024. https://doi.org/10.3390/foods14010046.
Article PubMed PubMed Central Google Scholar
Anand SS, Hawkes C, de Souza RJ, Mente A, Dehghan M, Nugent R, Zulyniak MA, Weis T, Bernstein AM, Krauss RM, et al. Food consumption and its impact on cardiovascular disease: importance of solutions focused on the globalized food system: A report from the workshop convened by the world heart federation. J Am Coll Cardiol. 2015;66(14):1590–614.
Article PubMed PubMed Central Google Scholar
Wishart DS, Cheng LL, Copié V, Edison AS, Eghbalnia HR, Hoch JC, et al. NMR and metabolomics-a roadmap for the future. Metabolites. 2022. https://doi.org/10.3390/metabo12080678.
Article PubMed PubMed Central Google Scholar
Sudlow C, Gallacher J, Allen N, Beral V, Burton P, Danesh J, et al. UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 2015;12(3):e1001779.
Article PubMed PubMed Central Google Scholar
Zhang Y, Xiao F, Xie R. Healthy volunteer bias for the role of genetic risk in dietary effects on hepatic steatosis, inflammation and fibrosis. J Hepatol. 2024;81(4):e201.
Article PubMed CAS Google Scholar
Xie R, Sha S, Peng L, Holleczek B, Brenner H, Schöttker B. Metabolomics data improve 10-year cardiovascular risk prediction with the SCORE2 algorithm for the general population without cardiovascular disease or diabetes. Eur J Prev Cardiol .2025. In press.
Julkunen H, Cichońska A, Tiainen M, Koskela H, Nybo K, Mäkelä V, Nokso-Koivisto J, Kristiansson K, Perola M, Salomaa V, et al. Atlas of plasma NMR biomarkers for health and disease in 118,461 individuals from the UK biobank. Nat Commun. 2023;14(1):604.
Article PubMed PubMed Central CAS Google Scholar
Xie R, Vlaski T, Sha S, Brenner H, Schöttker B. Sex-specific proteomic signatures improve cardiovascular risk prediction for the general population without cardiovascular disease or diabetes. J Adv Res. 2025. In press.
Xie R, Zhang Y. Associations between dietary flavonoid intake with hepatic steatosis and fibrosis quantified by VCTE: evidence from NHANES and FNDDS. Nutr Metab Cardiovasc Dis. 2023;33(6):1179–89.
Kerr KF, Wang Z, Janes H, McClelland RL, Psaty BM, Pepe MS. Net reclassification indices for evaluating risk-prediction instruments: a critical review. Epidemiol (Cambridge Mass). 2014;25(1):114.
Xie R, Vlaski T, Trares K, Herder C, Holleczek B, Brenner H, et al. Large-scale proteomics improve risk prediction for type 2 diabetes. Diabetes Care. 2025. https://doi.org/10.2337/dc24-2478.
Kris-Etherton PM, Krauss RM. Public health guidelines should recommend reducing saturated fat consumption as much as possible: yes. Am J Clin Nutr. 2020;112(1):13–8.
Article PubMed CAS Google Scholar
Eichelmann F, Prada M, Sellem L, Jackson KG, Salas Salvadó J, Razquin Burillo C, Estruch R, Friedén M, Rosqvist F, Risérus U, et al. Lipidome changes due to improved dietary fat quality inform cardiometabolic risk reduction and precision nutrition. Nat Med. 2024;30(10):2867–77.
Article PubMed PubMed Central CAS Google Scholar
Mozaffarian D, Micha R, Wallace S. Effects on coronary heart disease of increasing polyunsaturated fat in place of saturated fat: a systematic review and meta-analysis of randomized controlled trials. PLoS Med. 2010;7(3):e1000252.
Article PubMed PubMed Central Google Scholar
Du S, Chen J, Kim H, Walker ME, Lichtenstein AH, Chatterjee N, et al. Plasma protein biomarkers of healthy dietary patterns: results from the atherosclerosis risk in communities study and the Framingham heart study. J Nutr. 2023;153(1):34–46.
Harris WS, Westra J, Tintle NL, Sala-Vila A, Wu JH, Marklund M. Plasma n6 polyunsaturated fatty acid levels and risk for total and cause-specific mortality: a prospective observational study from the UK biobank. Am J Clin Nutr. 2024;120(4):936–42.
Article PubMed CAS Google Scholar
Lelli D, Antonelli Incalzi R, Ferrucci L, Bandinelli S, Pedone C. Association between PUFA intake and serum concentration and mortality in older adults: a cohort study. Clin Nutr. 2020;39(2):510–5.
Article PubMed CAS Google Scholar
Ganna A, Salihovic S, Sundström J, Broeckling CD, Hedman AK, Magnusson PK, Pedersen NL, Larsson A, Siegbahn A, Zilmer M, et al. Large-scale metabolomic profiling identifies novel biomarkers for incident coronary heart disease. PLoS Genet. 2014;10(12):e1004801.
Article PubMed PubMed Central Google Scholar
Used R. Lipid-related markers and cardiovascular disease prediction. JAMA. 2012;307(2499):506.
Vasile VC, Meeusen JW, Medina Inojosa JR, Donato LJ, Scott CG, Hyun MS, et al. Ceramide scores predict cardiovascular risk in the community. Arterioscler Thromb Vasc Biol. 2021;41(4):1558–69.
Article PubMed PubMed Central CAS Google Scholar
Franco WG, O’Keefe EL, O’Keefe JH, Tintle N, Marchioli R, Harris WS. Omega-3 index improves upon the pooled cohort equation in predicting risk for CVD. J Clin Lipidol. 2025;19(2):286–93.
Article PubMed PubMed Central Google Scholar
Villasanta-Gonzalez A, Mora-Ortiz M, Alcala-Diaz JF, Rivas-Garcia L, Torres-Peña JD, Lopez-Bascon A, et al. Plasma lipidic fingerprint associated with type 2 diabetes in patients with coronary heart disease: CORDIOPREV study. Cardiovasc Diabetol. 2023;22(1):199.
Article PubMed PubMed Central CAS Google Scholar
Reinders I, Murphy RA, Song X, Mitchell GF, Visser M, Cotch MF, et al. Higher plasma phospholipid n-3 PUFAs, but lower n-6 PUFAs, are associated with lower pulse wave velocity among older adults. J Nutr. 2015;145(10):2317–24.
Comments (0)