Rinella ME, Lazarus JV, Ratziu V, Francque SM, Sanyal AJ, Kanwal F, et al. A multisociety Delphi consensus statement on new fatty liver disease nomenclature. J Hepatol. 2023;79(6):1542–56. https://doi.org/10.1016/j.jhep.2023.06.003.
Article PubMed CAS Google Scholar
Rinella ME, Lazarus JV, Ratziu V, Francque SM, Sanyal AJ, Kanwal F, et al. A multisociety Delphi consensus statement on new fatty liver disease nomenclature. Ann Hepatol. 2024;29(1):101133. https://doi.org/10.1016/j.aohep.2023.101133.
Rinella ME, Lazarus JV, Ratziu V, Francque SM, Sanyal AJ, Kanwal F, et al. A multisociety Delphi consensus statement on new fatty liver disease nomenclature. Hepatology. 2023;78(6):1966–86. https://doi.org/10.1097/hep.0000000000000520.
Miao L, Targher G, Byrne CD, Cao YY, Zheng MH. Current status and future trends of the global burden of MASLD. Trends Endocrinol Metab. 2024;35(8):697–707. https://doi.org/10.1016/j.tem.2024.02.007.
Article PubMed CAS Google Scholar
Shi Y, Taherifard E, Saeed A, Saeed A, MASLD-Related HCC. A comprehensive review of the trends, pathophysiology, tumor microenvironment, surveillance, and treatment options. Curr Issues Mol Biol. 2024;46(6):5965–83. https://doi.org/10.3390/cimb46060356.
Article PubMed PubMed Central CAS Google Scholar
Israelsen M, Francque S, Tsochatzis EA, Krag A. Steatotic liver disease. Lancet. 2024;404(10464):1761–78. https://doi.org/10.1016/s0140-6736(24)01811-7.
Article PubMed CAS Google Scholar
Younossi ZM, Kalligeros M, Henry L. Epidemiology of metabolic Dysfunction-Associated steatotic liver disease. Clin Mol Hepatol. 2024. https://doi.org/10.3350/cmh.2024.0431.
Article PubMed PubMed Central Google Scholar
Chan KE, Ong EYH, Chung CH, Ong CEY, Koh B, Tan DJH, et al. Longitudinal outcomes associated with metabolic Dysfunction-Associated steatotic liver disease: A Meta-analysis of 129 studies. Clin Gastroenterol Hepatol. 2024;22(3):488–e9814. https://doi.org/10.1016/j.cgh.2023.09.018.
Targher G, Byrne CD, Tilg H. MASLD: a systemic metabolic disorder with cardiovascular and malignant complications. Gut. 2024;73(4):691–702. https://doi.org/10.1136/gutjnl-2023-330595.
Article PubMed CAS Google Scholar
Cruz-Jentoft AJ, Sayer AA, Sarcopenia. Lancet. 2019;393(10191):2636–46. https://doi.org/10.1016/s0140-6736(19)31138-9.
Cho MR, Lee S, Song SK. A review of sarcopenia pathophysiology, diagnosis, treatment and future direction. J Korean Med Sci. 2022;37(18):e146. https://doi.org/10.3346/jkms.2022.37.e146.
Article PubMed PubMed Central Google Scholar
Polyzos SA, Vachliotis ID, Mantzoros CS. Sarcopenia, sarcopenic obesity and nonalcoholic fatty liver disease. Metabolism. 2023;147:155676. https://doi.org/10.1016/j.metabol.2023.155676.
Article PubMed CAS Google Scholar
Kuchay MS, Martínez-Montoro JI, Kaur P, Fernández-García JC, Ramos-Molina B. Non-alcoholic fatty liver disease-related fibrosis and sarcopenia: an altered liver-muscle crosstalk leading to increased mortality risk. Ageing Res Rev. 2022;80:101696. https://doi.org/10.1016/j.arr.2022.101696.
Article PubMed CAS Google Scholar
Chan WK, Chuah KH, Rajaram RB, Lim LL, Ratnasingam J, Vethakkan SR. Metabolic Dysfunction-Associated steatotic liver disease (MASLD): A State-of-the-Art review. J Obes Metab Syndr. 2023;32(3):197–213. https://doi.org/10.7570/jomes23052.
Article PubMed PubMed Central Google Scholar
Malik A, Javaid S, Malik MI, Qureshi S. Relationship between sarcopenia and metabolic dysfunction-associated steatotic liver disease (MASLD): A systematic review and meta-analysis. Ann Hepatol. 2024;29(6):101544. https://doi.org/10.1016/j.aohep.2024.101544.
Article PubMed CAS Google Scholar
Li X, He J, Sun Q. The prevalence and effects of sarcopenia in patients with metabolic dysfunction-associated steatotic liver disease (MASLD): A systematic review and meta-analysis. Clin Nutr. 2024;43(9):2005–16. https://doi.org/10.1016/j.clnu.2024.07.006.
Article PubMed CAS Google Scholar
Zhang H, Qi G, Wang K, Yang J, Shen Y, Yang X, et al. Oxidative stress: roles in skeletal muscle atrophy. Biochem Pharmacol. 2023;214:115664. https://doi.org/10.1016/j.bcp.2023.115664.
Article PubMed CAS Google Scholar
Gensluckner S, Wernly B, Datz C, Aigner E, Iron. Oxidative stress, and metabolic Dysfunction-Associated steatotic liver disease. Antioxid (Basel). 2024;13(2). https://doi.org/10.3390/antiox13020208.
Chen Z, Tian R, She Z, Cai J, Li H. Role of oxidative stress in the pathogenesis of nonalcoholic fatty liver disease. Free Radic Biol Med. 2020;152:116–41. https://doi.org/10.1016/j.freeradbiomed.2020.02.025.
Article PubMed CAS Google Scholar
Nishikawa H, Fukunishi S, Asai A, Yokohama K, Nishiguchi S, Higuchi K. Pathophysiology and mechanisms of primary sarcopenia (Review). Int J Mol Med. 2021;48(2). https://doi.org/10.3892/ijmm.2021.4989.
Alizadeh Pahlavani H, Laher I, Knechtle B, Zouhal H. Exercise and mitochondrial mechanisms in patients with sarcopenia. Front Physiol. 2022;13:1040381. https://doi.org/10.3389/fphys.2022.1040381.
Article PubMed PubMed Central Google Scholar
Rygiel KA, Picard M, Turnbull DM. The ageing neuromuscular system and sarcopenia: a mitochondrial perspective. J Physiol. 2016;594(16):4499–512. https://doi.org/10.1113/jp271212.
Article PubMed PubMed Central CAS Google Scholar
Cailleaux PE, Déchelotte P, Coëffier M. Novel dietary strategies to manage sarcopenia. Curr Opin Clin Nutr Metab Care. 2024;27(3):234–43. https://doi.org/10.1097/mco.0000000000001023.
Article PubMed CAS Google Scholar
Fougere B, van Kan GA, Vellas B, Cesari M. Redox systems, antioxidants and sarcopenia. Curr Protein Pept Sci. 2018;19(7):643–8. https://doi.org/10.2174/1389203718666170317120040.
Article PubMed CAS Google Scholar
Robinson SM, Reginster JY, Rizzoli R, Shaw SC, Kanis JA, Bautmans I, et al. Does nutrition play a role in the prevention and management of sarcopenia? Clin Nutr. 2018;37(4):1121–32. https://doi.org/10.1016/j.clnu.2017.08.016.
Article PubMed CAS Google Scholar
van Dronkelaar C, van Velzen A, Abdelrazek M, van der Steen A, Weijs PJM, Tieland M. Minerals and sarcopenia; the role of calcium, iron, magnesium, phosphorus, potassium, selenium, sodium, and zinc on muscle mass, muscle strength, and physical performance in older adults: A systematic review. J Am Med Dir Assoc. 2018;19(1):6–e113. https://doi.org/10.1016/j.jamda.2017.05.026.
Wright ME, Mayne ST, Stolzenberg-Solomon RZ, Li Z, Pietinen P, Taylor PR, et al. Development of a comprehensive dietary antioxidant index and application to lung cancer risk in a cohort of male smokers. Am J Epidemiol. 2004;160(1):68–76. https://doi.org/10.1093/aje/kwh173.
Wang K, Zhou Q, Jiang Z, Liu S, Tang H. The inverse associations between composite-dietary-antioxidant-index and sarcopenia risk in US adults. Front Endocrinol (Lausanne). 2024;15:1442586. https://doi.org/10.3389/fendo.2024.1442586.
Chen H, Wu D, Chen Y, Shi A, Cai W, Yang X, et al. Association between the composite dietary antioxidant index and sarcopenia among united States adults: A cross-sectional study. JPEN J Parenter Enter Nutr. 2025;49(1):103–11. https://doi.org/10.1002/jpen.2697.
Wu D, Wang H, Wang W, Qing C, Zhang W, Gao X, et al. Association between composite dietary antioxidant index and handgrip strength in American adults: data from National health and nutrition examination survey (NHANES. Front Nutr. 2023;10:2011–4. https://doi.org/10.3389/fnut.2023.1147869.
Comments (0)