Linear association between the composite dietary antioxidant index and the prevalence of sarcopenia in metabolic dysfunction-associated steatotic liver disease

Rinella ME, Lazarus JV, Ratziu V, Francque SM, Sanyal AJ, Kanwal F, et al. A multisociety Delphi consensus statement on new fatty liver disease nomenclature. J Hepatol. 2023;79(6):1542–56. https://doi.org/10.1016/j.jhep.2023.06.003.

Article  PubMed  CAS  Google Scholar 

Rinella ME, Lazarus JV, Ratziu V, Francque SM, Sanyal AJ, Kanwal F, et al. A multisociety Delphi consensus statement on new fatty liver disease nomenclature. Ann Hepatol. 2024;29(1):101133. https://doi.org/10.1016/j.aohep.2023.101133.

Article  PubMed  Google Scholar 

Rinella ME, Lazarus JV, Ratziu V, Francque SM, Sanyal AJ, Kanwal F, et al. A multisociety Delphi consensus statement on new fatty liver disease nomenclature. Hepatology. 2023;78(6):1966–86. https://doi.org/10.1097/hep.0000000000000520.

Article  PubMed  Google Scholar 

Miao L, Targher G, Byrne CD, Cao YY, Zheng MH. Current status and future trends of the global burden of MASLD. Trends Endocrinol Metab. 2024;35(8):697–707. https://doi.org/10.1016/j.tem.2024.02.007.

Article  PubMed  CAS  Google Scholar 

Shi Y, Taherifard E, Saeed A, Saeed A, MASLD-Related HCC. A comprehensive review of the trends, pathophysiology, tumor microenvironment, surveillance, and treatment options. Curr Issues Mol Biol. 2024;46(6):5965–83. https://doi.org/10.3390/cimb46060356.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Israelsen M, Francque S, Tsochatzis EA, Krag A. Steatotic liver disease. Lancet. 2024;404(10464):1761–78. https://doi.org/10.1016/s0140-6736(24)01811-7.

Article  PubMed  CAS  Google Scholar 

Younossi ZM, Kalligeros M, Henry L. Epidemiology of metabolic Dysfunction-Associated steatotic liver disease. Clin Mol Hepatol. 2024. https://doi.org/10.3350/cmh.2024.0431.

Article  PubMed  PubMed Central  Google Scholar 

Chan KE, Ong EYH, Chung CH, Ong CEY, Koh B, Tan DJH, et al. Longitudinal outcomes associated with metabolic Dysfunction-Associated steatotic liver disease: A Meta-analysis of 129 studies. Clin Gastroenterol Hepatol. 2024;22(3):488–e9814. https://doi.org/10.1016/j.cgh.2023.09.018.

Article  PubMed  Google Scholar 

Targher G, Byrne CD, Tilg H. MASLD: a systemic metabolic disorder with cardiovascular and malignant complications. Gut. 2024;73(4):691–702. https://doi.org/10.1136/gutjnl-2023-330595.

Article  PubMed  CAS  Google Scholar 

Cruz-Jentoft AJ, Sayer AA, Sarcopenia. Lancet. 2019;393(10191):2636–46. https://doi.org/10.1016/s0140-6736(19)31138-9.

Article  PubMed  Google Scholar 

Cho MR, Lee S, Song SK. A review of sarcopenia pathophysiology, diagnosis, treatment and future direction. J Korean Med Sci. 2022;37(18):e146. https://doi.org/10.3346/jkms.2022.37.e146.

Article  PubMed  PubMed Central  Google Scholar 

Polyzos SA, Vachliotis ID, Mantzoros CS. Sarcopenia, sarcopenic obesity and nonalcoholic fatty liver disease. Metabolism. 2023;147:155676. https://doi.org/10.1016/j.metabol.2023.155676.

Article  PubMed  CAS  Google Scholar 

Kuchay MS, Martínez-Montoro JI, Kaur P, Fernández-García JC, Ramos-Molina B. Non-alcoholic fatty liver disease-related fibrosis and sarcopenia: an altered liver-muscle crosstalk leading to increased mortality risk. Ageing Res Rev. 2022;80:101696. https://doi.org/10.1016/j.arr.2022.101696.

Article  PubMed  CAS  Google Scholar 

Chan WK, Chuah KH, Rajaram RB, Lim LL, Ratnasingam J, Vethakkan SR. Metabolic Dysfunction-Associated steatotic liver disease (MASLD): A State-of-the-Art review. J Obes Metab Syndr. 2023;32(3):197–213. https://doi.org/10.7570/jomes23052.

Article  PubMed  PubMed Central  Google Scholar 

Malik A, Javaid S, Malik MI, Qureshi S. Relationship between sarcopenia and metabolic dysfunction-associated steatotic liver disease (MASLD): A systematic review and meta-analysis. Ann Hepatol. 2024;29(6):101544. https://doi.org/10.1016/j.aohep.2024.101544.

Article  PubMed  CAS  Google Scholar 

Li X, He J, Sun Q. The prevalence and effects of sarcopenia in patients with metabolic dysfunction-associated steatotic liver disease (MASLD): A systematic review and meta-analysis. Clin Nutr. 2024;43(9):2005–16. https://doi.org/10.1016/j.clnu.2024.07.006.

Article  PubMed  CAS  Google Scholar 

Zhang H, Qi G, Wang K, Yang J, Shen Y, Yang X, et al. Oxidative stress: roles in skeletal muscle atrophy. Biochem Pharmacol. 2023;214:115664. https://doi.org/10.1016/j.bcp.2023.115664.

Article  PubMed  CAS  Google Scholar 

Gensluckner S, Wernly B, Datz C, Aigner E, Iron. Oxidative stress, and metabolic Dysfunction-Associated steatotic liver disease. Antioxid (Basel). 2024;13(2). https://doi.org/10.3390/antiox13020208.

Chen Z, Tian R, She Z, Cai J, Li H. Role of oxidative stress in the pathogenesis of nonalcoholic fatty liver disease. Free Radic Biol Med. 2020;152:116–41. https://doi.org/10.1016/j.freeradbiomed.2020.02.025.

Article  PubMed  CAS  Google Scholar 

Nishikawa H, Fukunishi S, Asai A, Yokohama K, Nishiguchi S, Higuchi K. Pathophysiology and mechanisms of primary sarcopenia (Review). Int J Mol Med. 2021;48(2). https://doi.org/10.3892/ijmm.2021.4989.

Alizadeh Pahlavani H, Laher I, Knechtle B, Zouhal H. Exercise and mitochondrial mechanisms in patients with sarcopenia. Front Physiol. 2022;13:1040381. https://doi.org/10.3389/fphys.2022.1040381.

Article  PubMed  PubMed Central  Google Scholar 

Rygiel KA, Picard M, Turnbull DM. The ageing neuromuscular system and sarcopenia: a mitochondrial perspective. J Physiol. 2016;594(16):4499–512. https://doi.org/10.1113/jp271212.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Cailleaux PE, Déchelotte P, Coëffier M. Novel dietary strategies to manage sarcopenia. Curr Opin Clin Nutr Metab Care. 2024;27(3):234–43. https://doi.org/10.1097/mco.0000000000001023.

Article  PubMed  CAS  Google Scholar 

Fougere B, van Kan GA, Vellas B, Cesari M. Redox systems, antioxidants and sarcopenia. Curr Protein Pept Sci. 2018;19(7):643–8. https://doi.org/10.2174/1389203718666170317120040.

Article  PubMed  CAS  Google Scholar 

Robinson SM, Reginster JY, Rizzoli R, Shaw SC, Kanis JA, Bautmans I, et al. Does nutrition play a role in the prevention and management of sarcopenia? Clin Nutr. 2018;37(4):1121–32. https://doi.org/10.1016/j.clnu.2017.08.016.

Article  PubMed  CAS  Google Scholar 

van Dronkelaar C, van Velzen A, Abdelrazek M, van der Steen A, Weijs PJM, Tieland M. Minerals and sarcopenia; the role of calcium, iron, magnesium, phosphorus, potassium, selenium, sodium, and zinc on muscle mass, muscle strength, and physical performance in older adults: A systematic review. J Am Med Dir Assoc. 2018;19(1):6–e113. https://doi.org/10.1016/j.jamda.2017.05.026.

Article  PubMed  Google Scholar 

Wright ME, Mayne ST, Stolzenberg-Solomon RZ, Li Z, Pietinen P, Taylor PR, et al. Development of a comprehensive dietary antioxidant index and application to lung cancer risk in a cohort of male smokers. Am J Epidemiol. 2004;160(1):68–76. https://doi.org/10.1093/aje/kwh173.

Article  PubMed  Google Scholar 

Wang K, Zhou Q, Jiang Z, Liu S, Tang H. The inverse associations between composite-dietary-antioxidant-index and sarcopenia risk in US adults. Front Endocrinol (Lausanne). 2024;15:1442586. https://doi.org/10.3389/fendo.2024.1442586.

Article  PubMed  Google Scholar 

Chen H, Wu D, Chen Y, Shi A, Cai W, Yang X, et al. Association between the composite dietary antioxidant index and sarcopenia among united States adults: A cross-sectional study. JPEN J Parenter Enter Nutr. 2025;49(1):103–11. https://doi.org/10.1002/jpen.2697.

Article  CAS  Google Scholar 

Wu D, Wang H, Wang W, Qing C, Zhang W, Gao X, et al. Association between composite dietary antioxidant index and handgrip strength in American adults: data from National health and nutrition examination survey (NHANES. Front Nutr. 2023;10:2011–4. https://doi.org/10.3389/fnut.2023.1147869.

Article 

Comments (0)

No login
gif