LC-HRMS analysis of ultrashort- and short-chain PFAS on porous graphitic carbon column and study of accumulation in plants

Zarębska M, Bajkacz S. Poly– and perfluoroalkyl substances (PFAS) - recent advances in the aquatic environment analysis. TrAC Trends Anal Chem. 2023;163:117062. https://doi.org/10.1016/j.trac.2023.117062.

Article  CAS  Google Scholar 

Gagliano E, Sgroi M, Falciglia PP, Vagliasindi FGA, Roccaro P. Removal of poly- and perfluoroalkyl substances (PFAS) from water by adsorption: Role of PFAS chain length, effect of organic matter and challenges in adsorbent regeneration. Water Res. 2020;171:115381. https://doi.org/10.1016/j.watres.2019.115381.

Article  CAS  PubMed  Google Scholar 

Hu XC, Andrews DQ, Lindstrom AB, Bruton TA, Schaider LA, Grandjean P, Lohmann R, Carignan CC, Blum A, Balan SA, Higgins CP, Sunderland EM. Detection of Poly- and Perfluoroalkyl Substances (PFASs) in U.S. Drinking Water Linked to Industrial Sites, Military Fire Training Areas, and Wastewater Treatment Plants. Environ Sci Technol Lett. 2016;3:344–50. https://doi.org/10.1021/acs.estlett.6b00260.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lenka SP, Kah M, Padhye LP. A review of the occurrence, transformation, and removal of poly- and perfluoroalkyl substances (PFAS) in wastewater treatment plants. Water Res. 2021;199:117187. https://doi.org/10.1016/j.watres.2021.117187.

Article  CAS  PubMed  Google Scholar 

Domingo JL, Nadal M. Human exposure to per- and polyfluoroalkyl substances (PFAS) through drinking water: A review of the recent scientific literature. Environ Res. 2019;177:108648. https://doi.org/10.1016/j.envres.2019.108648.

Article  CAS  PubMed  Google Scholar 

Sunderland EM, Hu XC, Dassuncao C, Tokranov AK, Wagner CC, Allen JG. A review of the pathways of human exposure to poly- and perfluoroalkyl substances (PFASs) and present understanding of health effects. J Expo Sci Environ Epidemiol. 2019;29:131–47. https://doi.org/10.1038/s41370-018-0094-1.

Article  CAS  PubMed  Google Scholar 

Ruan Y, Lalwani D, Kwok KY, Yamazaki E, Taniyasu S, Kumar NJI, Lam PKS, Yamashita N. Assessing exposure to legacy and emerging per- and polyfluoroalkyl substances via hair – The first nationwide survey in India. Chemosphere. 2019;229:366–73. https://doi.org/10.1016/j.chemosphere.2019.04.195.

Article  CAS  PubMed  Google Scholar 

Jian J-M, Guo Y, Zeng L, Liang-Ying L, Lu X, Wang F, Zeng EY. Global distribution of perfluorochemicals (PFCs) in potential human exposure source–A review. Environ Int. 2017;108:51–62. https://doi.org/10.1016/j.envint.2017.07.024.

Article  CAS  PubMed  Google Scholar 

Weiss JM, Andersson PL, Lamoree MH, Leonards PEG, van Leeuwen SPJ, Hamers T. Competitive binding of poly- and perfluorinated compounds to the thyroid hormone transport protein transthyretin. Toxicol Sci. 2009;109:206–16. https://doi.org/10.1093/toxsci/kfp055.

Article  CAS  PubMed  Google Scholar 

Carlier MP, Cenijn PH, Baygildiev T, Irwan J, Escher SE, van Duursen MBM, Hamers T. Profiling the endocrine-disrupting properties of triazines, triazoles, and short-chain PFAS. Toxicol Sci. 2024;202:250–64. https://doi.org/10.1093/toxsci/kfae131.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kashobwe L, Sadrabadi F, Braeuning A, Leonards PEG, Buhrke T, Hamers T. In vitro screening of understudied PFAS with a focus on lipid metabolism disruption. Arch Toxicol. 2024;98:3381–95. https://doi.org/10.1007/s00204-024-03814-2.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wagenaars F, Cenijn P, Chen Z, Meima M, Scholze M, Hamers T. Two novel in vitro assays to screen chemicals for their capacity to inhibit thyroid hormone transmembrane transporter proteins OATP1C1 and OAT4. Arch Toxicol. 2024;98:3019–34. https://doi.org/10.1007/s00204-024-03787-2.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Poothong S, Papadopoulou E, Padilla-Sánchez JA, Thomsen C, Haug LS. Multiple pathways of human exposure to poly- and perfluoroalkyl substances (PFASs): From external exposure to human blood. Environ Int. 2020;134:105244. https://doi.org/10.1016/j.envint.2019.105244.

Article  CAS  PubMed  Google Scholar 

Rand AA, Mabury SA. Is there a human health risk associated with indirect exposure to perfluoroalkyl carboxylates (PFCAs)? Toxicology. 2017;375:28–36. https://doi.org/10.1016/j.tox.2016.11.011.

Article  CAS  PubMed  Google Scholar 

Brendel S, Fetter É, Staude C, Vierke L, Biegel-Engler A. Short-chain perfluoroalkyl acids: environmental concerns and a regulatory strategy under REACH. Environ Sci Eur. 2018;30:9. https://doi.org/10.1186/s12302-018-0134-4.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Arp HPH, Gredelj A, Glüge J, Scheringer M, Cousins IT. The global threat from the irreversible accumulation of Trifluoroacetic Acid (TFA). Environ Sci Technol. 2024;58:19925–35. https://doi.org/10.1021/acs.est.4c06189.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liang S-H, Steimling JA, Chang M. Analysis of ultrashort-chain and short-chain (C1 to C4) per- and polyfluorinated substances in potable and non-potable waters. J Chromatogr Open. 2023;4:100098. https://doi.org/10.1016/j.jcoa.2023.100098.

Article  Google Scholar 

Freeling F, Björnsdotter MK. Assessing the environmental occurrence of the anthropogenic contaminant trifluoroacetic acid (TFA). Curr Opin Green Sustain Chem. 2023;41:100807. https://doi.org/10.1016/j.cogsc.2023.100807.

Article  CAS  Google Scholar 

Xie G, Cui J, Zhai Z, Zhang J. Distribution characteristics of trifluoroacetic acid in the environments surrounding fluorochemical production plants in Jinan. China Environ Sci Pollut Res. 2020;27:983–91. https://doi.org/10.1007/s11356-019-06689-4.

Article  CAS  Google Scholar 

López SE, Salazar J. Trifluoroacetic acid: Uses and recent applications in organic synthesis. J Fluor Chem. 2013;156:73–100. https://doi.org/10.1016/j.jfluchem.2013.09.004.

Article  CAS  Google Scholar 

Neuwald IJ, Hübner D, Wiegand HL, Valkov V, Borchers U, Nödler K, Scheurer M, Hale SE, Arp HPH, Zahn D. Ultra-short-chain PFASs in the sources of german drinking water: prevalent, overlooked, difficult to remove, and unregulated. Environ Sci Technol. 2022;56:6380–90. https://doi.org/10.1021/acs.est.1c07949.

Article  CAS  PubMed  Google Scholar 

Tian Y, Yao Y, Chang S, Zhao Z, Zhao Y, Yuan X, Wu F, Sun H. Occurrence and phase distribution of neutral and ionizable Per- and Polyfluoroalkyl Substances (PFASs) in the atmosphere and plant leaves around landfills: a case study in Tianjin, China. Environ Sci Technol. 2018;52:1301–10. https://doi.org/10.1021/acs.est.7b05385.

Article  CAS  PubMed  Google Scholar 

Chen H, Yao Y, Zhao Z, Wang Y, Wang Q, Ren C, Wang B, Sun H, Alder AC, Kannan K. Multimedia distribution and transfer of Per- and Polyfluoroalkyl Substances (PFASs) Surrounding two fluorochemical manufacturing facilities in Fuxin, China. Environ Sci Technol. 2018;52:8263–71. https://doi.org/10.1021/acs.est.8b00544.

Article  CAS  PubMed  Google Scholar 

de los Angeles Garavagno M, Holland R, Khan MAH, Orr-Ewing AJ, Shallcross DE. Trifluoroacetic acid: toxicity, sources sinks and future prospects. Sustainability. 2024;16:2382. https://doi.org/10.3390/su16062382.

Article  CAS  Google Scholar 

Berends AG, Boutonnet JC, De RCG, Thompson RS. Toxicity of trifluoroacetate to aquatic organisms. Environ Toxicol Chem. 1999;18:1053–9. https://doi.org/10.1002/etc.5620180533.

Article  CAS  Google Scholar 

Lau C, Butenhoff JL, Rogers JM. The developmental toxicity of perfluoroalkyl acids and their derivatives. Toxicol Appl Pharmacol. 2004;198:231–41. https://doi.org/10.1016/j.taap.2003.11.031.

Article  CAS  PubMed  Google Scholar 

Olson CT, Andersen ME. The acute toxicity of perfluorooctanoic and perfluorodecanoic acids in male rats and effects on tissue fatty acids. Toxicol Appl Pharmacol. 1983;70:362–72. https://doi.org/10.1016/0041-008X(83)90154-0.

Article  CAS  PubMed 

Comments (0)

No login
gif