Sýkora D, Řezanka P, Záruba K, Král V. Recent advances in mixed-mode chromatographic stationary phases. J Sep Sci. 2018;41:3889–903. https://doi.org/10.1002/jssc.201801048.
Zhou H, Chen J, Li H, Quan K, Zhang Y, Qiu H. Imidazolium ionic liquid-enhanced poly(quinine)-modified silica as a new multi-mode chromatographic stationary phase for separation of achiral and chiral compounds. Talanta. 2020;211: 120743. https://doi.org/10.1016/j.talanta.2020.120743.
Article CAS PubMed Google Scholar
Zhang L, Dai Q, Qiao X, Yu C, Qin X, Yan H. Mixed-mode chromatographic stationary phases: recent advancements and its applications for high-performance liquid chromatography. Trends Anal Chem. 2016;82:143–63. https://doi.org/10.1016/j.trac.2016.05.011.
Yang Y, Zhou J, Liang Q, Dai X, Yang H, Wan M, Ou J, Liao M, Wang L. Comparing the separation performance of poly(ethyleneimine) embedded butyric and octanoic acid based chromatographic stationary phases. J Chromatogr A. 2023;1706: 464268. https://doi.org/10.1016/j.chroma.2023.464268.
Article CAS PubMed Google Scholar
Dembek M, Bocian S. Phosphodiester stationary phases as universal chromatographic materials for separation in RP LC, HILIC, and pure aqueous mobile phase. Materials. 2023;16: 3539. https://doi.org/10.3390/ma16093539.
Article CAS PubMed PubMed Central Google Scholar
zhou J, Wan M, Dai X, Yang H, Yang Y, Ou J, Liao M, Liu J, Wang L. Polar-embedded phenyl dendritic stationary phase for multi-mode chromatographic separation. Microchem J. 2023;185: 108303. https://doi.org/10.1016/j.microc.2022.108303.
Jiang J, Wang Y, Wang C. Preparation and characterization of mixed-mode hydrophilic stationary phase based on triple hydrophilic functionalized moieties and its application to traditional Chinese herbal compound. Microchem J. 2023;191: 108863. https://doi.org/10.1016/j.microc.2023.108863.
Zheng Y, Wan M, Zhou J, Luo Q, Gao D, Fu Q, Zeng J, Zu F, Wang L. Striped covalent organic frameworks modified stationary phase for mixed mode chromatography. J Chromatogr A. 2021;1649: 462186. https://doi.org/10.1016/j.chroma.2021.462186.
Article CAS PubMed Google Scholar
Wolrab D, Fruehauf P, Kolderova N, Kohout M. Strong cation- and zwitterion-exchange-type mixed-mode stationary phases for separation of pharmaceuticals and biogenic amines in different chromatographic modes. J Chromatogr A. 2021;1635: 461751. https://doi.org/10.1016/j.chroma.2020.461751.
Article CAS PubMed Google Scholar
Zhang Y, Zhong H, Zhou S, Han H, Zhang M, Qiu H. A docosyl-terminated polyamine amphiphile-bonded stationary phase for multimodal separations in liquid chromatography. J Chromatogr A. 2021;1642: 462045. https://doi.org/10.1016/j.chroma.2021.462045.
Article CAS PubMed Google Scholar
Mumin MY, Aral H, Sunkur M, Aral T. A new mixed-mode stationary phase derived from [2-(3,4-epoxycyclohexyl)ethyl]trimethoxysilane as a coupling reagent and its RPLC/HILIC/IEC applications. ChemSelect. 2022;7: e202204069. https://doi.org/10.1002/slct.202204069.
Zhang Y, Zhong H, Cao ZA, Zhou S, Zhang D, Lu R, Han H, Zhang M, Qiu H. Design and evaluation of polar-embedded stationary phases containing tria-contyl group for liquid chromatography. J Chromatogr A. 2020;1621: 461035. https://doi.org/10.1016/j.chroma.2020.461035.
Article CAS PubMed Google Scholar
Han H, Zhang Y, Lu R, Zhang M. An alternative approach for preparation of amide-embedded stationary phase for reversed-phase liquid chromatography. J Chromatogr A. 2019;1593:24–33. https://doi.org/10.1016/j.chroma.2018.12.018.
Article CAS PubMed Google Scholar
Hosseini ES, Tabar Heydar K. Preparation of two amide-bonded stationary phases and comparative evaluation under mixed-mode chromatography. J Sep Sci. 2021;44:2888–97. https://doi.org/10.1002/jssc.202100291.
Article CAS PubMed Google Scholar
Aral H, Çelik KS, Altındağ R, Aral T. Synthesis, characterization, and application of a novel multifunctional stationary phase for hydrophilic interaction/reversed phase mixed-mode chromatography. Talanta. 2017;174:703–14. https://doi.org/10.1016/j.talanta.2017.07.014.
Article CAS PubMed Google Scholar
Aral T, Aral H, Ziyadanoğulları B, Ziyadanoğulları R. Synthesis of a mixed-mode stationary phase derived from glutamine for HPLC separation of structurally different biologically active compounds: HILIC and reversed-phase applications. Talanta. 2015;131:64–73. https://doi.org/10.1016/j.talanta.2014.07.055.
Article CAS PubMed Google Scholar
Aral H, Aral T, Ziyadanoğulları B, Ziyadanoğulları R. Development of a novel amide-silica stationary phase for the reversed-phase HPLC separation of different classes of phytohormones. Talanta. 2013;116:155–63. https://doi.org/10.1016/j.talanta.2013.05.034.
Article CAS PubMed Google Scholar
Li Y, Yang J, Jin J, Sun X, Wang L, Chen J. New reversed-phase/anion-exchange/hydrophilic interaction mixed-mode stationary phase based on dendritic polymer-modified porous silica. J Chromatogr A. 2014;1337:133–9. https://doi.org/10.1016/j.chroma.2014.02.044.
Article CAS PubMed Google Scholar
Qiu H, Mallik AK, Takafuji M, Jiang S, Ihara H. New poly(ionic liquid)-grafted silica multi-mode stationary phase for anion-exchange/reversed-phase/hydrophilic interaction liquid chromatography. Analyst. 2012;137:2553–5. https://doi.org/10.1039/C2AN35348B.
Article CAS PubMed Google Scholar
Gao J, Luo G, Li Z, Li H, Zhao L, Qiu H. A new strategy for the preparation of mixed-mode chromatographic stationary phases based on modified dialdehyde cellulose. J Chromatogr A. 2020. https://doi.org/10.1016/j.chroma.2020.460885.
Wolter M, Maalouf M, Janek M, Knappe C, Kramer M, Lämmerhofer M. Triphenyl-modified mixed-mode stationary phases with and without embedded ion-exchange sites for high-performance liquid chromatography. J Sep Sci. 2024;47: e70058. https://doi.org/10.1002/jssc.70058.
Article CAS PubMed PubMed Central Google Scholar
Liu X, Pohl CA. Hilic behaviour of a reversed-phase/cation-exchange/anion-exchange trimode column. J Sep Sci. 2010;33:768–77. https://doi.org/10.1002/jssc.200900645.
Wu H, Zeng L, Wei M, Chen L, Guo J, Huang Y, Lei F, Li H. Preparation of mixed-mode chromatographic stationary phases based on modified rosin and its application in the separation of natural medicines. Microchem J. 2025;214: 114110. https://doi.org/10.1016/j.microc.2025.114110.
Zeng H, Peng J, Peng H, Yang H, Wang X, Xu Z, Chen W. Preparation and post-modified of dicationic ionic liquid stationary phase and their application in mixed-mode liquid chromatography. Microchem J. 2024;202: 110785. https://doi.org/10.1016/j.microc.2024.110785.
Hu Z, Jiang Y, Cao P, Liu Y, Zhang Y, Chen W, Tang S. Performance evaluation of 2-undecylimidazole/propyl methacrylate bifunctional silica gel for mixed-mode reversed-phase/anion-exchange chromatography. Microchem J. 2023;191: 108768. https://doi.org/10.1016/j.microc.2023.108768.
Wu J, Wang X, Peng H, Zhang Z, Yu J, Yang H, Zeng H, Zhou G, Peng J. Preparation of ionic liquid stationary phase copolymerized with anion and cation for mixed-mode liquid chromatography. Microchem J. 2023;195: 109470. https://doi.org/10.1016/j.microc.2023.109470.
Wang L, Wei W, Xia Z, Jie X, Xia ZZ. Recent advances in materials for stationary phases of mixed-mode high-performance liquid chromatography. Trends Anal Chem. 2016;80:495–506. https://doi.org/10.1016/j.trac.2016.04.001.
Wang X, Wang X, Wu J, Yu J, Zeng H, Yang H, Peng H, Zhou G, Peng J. Preparation of dicationic ionic liquid modified silica stationary phase for mixed-mode liquid chromatography and its application for food additive detection. Anal Chim Acta. 2024;1321: 343018. https://doi.org/10.1016/j.aca.2024.343018.
Comments (0)