Synthesis of a novel multifunctional stationary phase derived from diethanolamine, HILIC/RPLC/WAX mixed-mode HPLC applications, and investigation of the retention mechanism

Sýkora D, Řezanka P, Záruba K, Král V. Recent advances in mixed-mode chromatographic stationary phases. J Sep Sci. 2018;41:3889–903. https://doi.org/10.1002/jssc.201801048.

Article  CAS  Google Scholar 

Zhou H, Chen J, Li H, Quan K, Zhang Y, Qiu H. Imidazolium ionic liquid-enhanced poly(quinine)-modified silica as a new multi-mode chromatographic stationary phase for separation of achiral and chiral compounds. Talanta. 2020;211: 120743. https://doi.org/10.1016/j.talanta.2020.120743.

Article  CAS  PubMed  Google Scholar 

Zhang L, Dai Q, Qiao X, Yu C, Qin X, Yan H. Mixed-mode chromatographic stationary phases: recent advancements and its applications for high-performance liquid chromatography. Trends Anal Chem. 2016;82:143–63. https://doi.org/10.1016/j.trac.2016.05.011.

Article  CAS  Google Scholar 

Yang Y, Zhou J, Liang Q, Dai X, Yang H, Wan M, Ou J, Liao M, Wang L. Comparing the separation performance of poly(ethyleneimine) embedded butyric and octanoic acid based chromatographic stationary phases. J Chromatogr A. 2023;1706: 464268. https://doi.org/10.1016/j.chroma.2023.464268.

Article  CAS  PubMed  Google Scholar 

Dembek M, Bocian S. Phosphodiester stationary phases as universal chromatographic materials for separation in RP LC, HILIC, and pure aqueous mobile phase. Materials. 2023;16: 3539. https://doi.org/10.3390/ma16093539.

Article  CAS  PubMed  PubMed Central  Google Scholar 

zhou J, Wan M, Dai X, Yang H, Yang Y, Ou J, Liao M, Liu J, Wang L. Polar-embedded phenyl dendritic stationary phase for multi-mode chromatographic separation. Microchem J. 2023;185: 108303. https://doi.org/10.1016/j.microc.2022.108303.

Article  CAS  Google Scholar 

Jiang J, Wang Y, Wang C. Preparation and characterization of mixed-mode hydrophilic stationary phase based on triple hydrophilic functionalized moieties and its application to traditional Chinese herbal compound. Microchem J. 2023;191: 108863. https://doi.org/10.1016/j.microc.2023.108863.

Article  CAS  Google Scholar 

Zheng Y, Wan M, Zhou J, Luo Q, Gao D, Fu Q, Zeng J, Zu F, Wang L. Striped covalent organic frameworks modified stationary phase for mixed mode chromatography. J Chromatogr A. 2021;1649: 462186. https://doi.org/10.1016/j.chroma.2021.462186.

Article  CAS  PubMed  Google Scholar 

Wolrab D, Fruehauf P, Kolderova N, Kohout M. Strong cation- and zwitterion-exchange-type mixed-mode stationary phases for separation of pharmaceuticals and biogenic amines in different chromatographic modes. J Chromatogr A. 2021;1635: 461751. https://doi.org/10.1016/j.chroma.2020.461751.

Article  CAS  PubMed  Google Scholar 

Zhang Y, Zhong H, Zhou S, Han H, Zhang M, Qiu H. A docosyl-terminated polyamine amphiphile-bonded stationary phase for multimodal separations in liquid chromatography. J Chromatogr A. 2021;1642: 462045. https://doi.org/10.1016/j.chroma.2021.462045.

Article  CAS  PubMed  Google Scholar 

Mumin MY, Aral H, Sunkur M, Aral T. A new mixed-mode stationary phase derived from [2-(3,4-epoxycyclohexyl)ethyl]trimethoxysilane as a coupling reagent and its RPLC/HILIC/IEC applications. ChemSelect. 2022;7: e202204069. https://doi.org/10.1002/slct.202204069.

Article  CAS  Google Scholar 

Zhang Y, Zhong H, Cao ZA, Zhou S, Zhang D, Lu R, Han H, Zhang M, Qiu H. Design and evaluation of polar-embedded stationary phases containing tria-contyl group for liquid chromatography. J Chromatogr A. 2020;1621: 461035. https://doi.org/10.1016/j.chroma.2020.461035.

Article  CAS  PubMed  Google Scholar 

Han H, Zhang Y, Lu R, Zhang M. An alternative approach for preparation of amide-embedded stationary phase for reversed-phase liquid chromatography. J Chromatogr A. 2019;1593:24–33. https://doi.org/10.1016/j.chroma.2018.12.018.

Article  CAS  PubMed  Google Scholar 

Hosseini ES, Tabar Heydar K. Preparation of two amide-bonded stationary phases and comparative evaluation under mixed-mode chromatography. J Sep Sci. 2021;44:2888–97. https://doi.org/10.1002/jssc.202100291.

Article  CAS  PubMed  Google Scholar 

Aral H, Çelik KS, Altındağ R, Aral T. Synthesis, characterization, and application of a novel multifunctional stationary phase for hydrophilic interaction/reversed phase mixed-mode chromatography. Talanta. 2017;174:703–14. https://doi.org/10.1016/j.talanta.2017.07.014.

Article  CAS  PubMed  Google Scholar 

Aral T, Aral H, Ziyadanoğulları B, Ziyadanoğulları R. Synthesis of a mixed-mode stationary phase derived from glutamine for HPLC separation of structurally different biologically active compounds: HILIC and reversed-phase applications. Talanta. 2015;131:64–73. https://doi.org/10.1016/j.talanta.2014.07.055.

Article  CAS  PubMed  Google Scholar 

Aral H, Aral T, Ziyadanoğulları B, Ziyadanoğulları R. Development of a novel amide-silica stationary phase for the reversed-phase HPLC separation of different classes of phytohormones. Talanta. 2013;116:155–63. https://doi.org/10.1016/j.talanta.2013.05.034.

Article  CAS  PubMed  Google Scholar 

Li Y, Yang J, Jin J, Sun X, Wang L, Chen J. New reversed-phase/anion-exchange/hydrophilic interaction mixed-mode stationary phase based on dendritic polymer-modified porous silica. J Chromatogr A. 2014;1337:133–9. https://doi.org/10.1016/j.chroma.2014.02.044.

Article  CAS  PubMed  Google Scholar 

Qiu H, Mallik AK, Takafuji M, Jiang S, Ihara H. New poly(ionic liquid)-grafted silica multi-mode stationary phase for anion-exchange/reversed-phase/hydrophilic interaction liquid chromatography. Analyst. 2012;137:2553–5. https://doi.org/10.1039/C2AN35348B.

Article  CAS  PubMed  Google Scholar 

Gao J, Luo G, Li Z, Li H, Zhao L, Qiu H. A new strategy for the preparation of mixed-mode chromatographic stationary phases based on modified dialdehyde cellulose. J Chromatogr A. 2020. https://doi.org/10.1016/j.chroma.2020.460885.

Article  PubMed  Google Scholar 

Wolter M, Maalouf M, Janek M, Knappe C, Kramer M, Lämmerhofer M. Triphenyl-modified mixed-mode stationary phases with and without embedded ion-exchange sites for high-performance liquid chromatography. J Sep Sci. 2024;47: e70058. https://doi.org/10.1002/jssc.70058.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu X, Pohl CA. Hilic behaviour of a reversed-phase/cation-exchange/anion-exchange trimode column. J Sep Sci. 2010;33:768–77. https://doi.org/10.1002/jssc.200900645.

Article  CAS  Google Scholar 

Wu H, Zeng L, Wei M, Chen L, Guo J, Huang Y, Lei F, Li H. Preparation of mixed-mode chromatographic stationary phases based on modified rosin and its application in the separation of natural medicines. Microchem J. 2025;214: 114110. https://doi.org/10.1016/j.microc.2025.114110.

Article  CAS  Google Scholar 

Zeng H, Peng J, Peng H, Yang H, Wang X, Xu Z, Chen W. Preparation and post-modified of dicationic ionic liquid stationary phase and their application in mixed-mode liquid chromatography. Microchem J. 2024;202: 110785. https://doi.org/10.1016/j.microc.2024.110785.

Article  CAS  Google Scholar 

Hu Z, Jiang Y, Cao P, Liu Y, Zhang Y, Chen W, Tang S. Performance evaluation of 2-undecylimidazole/propyl methacrylate bifunctional silica gel for mixed-mode reversed-phase/anion-exchange chromatography. Microchem J. 2023;191: 108768. https://doi.org/10.1016/j.microc.2023.108768.

Article  CAS  Google Scholar 

Wu J, Wang X, Peng H, Zhang Z, Yu J, Yang H, Zeng H, Zhou G, Peng J. Preparation of ionic liquid stationary phase copolymerized with anion and cation for mixed-mode liquid chromatography. Microchem J. 2023;195: 109470. https://doi.org/10.1016/j.microc.2023.109470.

Article  CAS  Google Scholar 

Wang L, Wei W, Xia Z, Jie X, Xia ZZ. Recent advances in materials for stationary phases of mixed-mode high-performance liquid chromatography. Trends Anal Chem. 2016;80:495–506. https://doi.org/10.1016/j.trac.2016.04.001.

Article  CAS  Google Scholar 

Wang X, Wang X, Wu J, Yu J, Zeng H, Yang H, Peng H, Zhou G, Peng J. Preparation of dicationic ionic liquid modified silica stationary phase for mixed-mode liquid chromatography and its application for food additive detection. Anal Chim Acta. 2024;1321: 343018. https://doi.org/10.1016/j.aca.2024.343018.

Article  CAS  PubMed 

Comments (0)

No login
gif