Yan M, Zhu T, Wen C. Purification of testosterone and its metabolites in urine using two-dimensional high-performance liquid chromatography for 13C/12C ratios analysis by gas chromatography/combustion/isotope ratio mass spectrometry. J Pharm Biomed Anal. 2025;263:116921.
Article CAS PubMed Google Scholar
Steff J, Parr MK. Same, but different: variations in fragment ions among stereoisomers of a 17α-methyl steroid in gas chromatography/electron ionization mass spectrometry. Rapid Commun Mass Spectrom. 2025;39(2): e9934. https://doi.org/10.1002/rcm.9934.
Article CAS PubMed Google Scholar
Vanberg P, Atar D. Androgenic anabolic steroid abuse and the cardiovascular system. Handb Exp Pharmacol. 2010;195:411–57. https://doi.org/10.1007/978-3-540-79088-4_18.
Corona G, Rastrelli G, Marchiani S, Filippi S, Morelli A, Sarchielli E, Sforza A, Vignozzi L, Maggi M. Consequences of anabolic-androgenic steroid abuse in males; sexual and reproductive perspective. World J Mens Health. 2022;40(2):165–78. https://doi.org/10.5534/wjmh.210021.
Abdel-Hamid NM, Abdel Hamid M, Mohamed A. The hepato-fibrogenic potential of both acute and chronic treatments with paracetamol, ibuprofen, and aspirin in rats. J Biosci Appl Res. 2022. https://doi.org/10.21608/jbaar.2022.261227.
Graham MR, Evans P, Davies B, Baker JS. AAS, growth hormone, and insulin abuse: psychological and neuroendocrine effects. Ther Clin Risk Manag. 2008;4(3):587–97. https://doi.org/10.2147/tcrm.s2495.
Article CAS PubMed PubMed Central Google Scholar
Zhong S, Qin S, Wang Y, Li H, Wang X, Chai T, Lu J. Identification and characterization of etomidate and metomidate metabolites in zebrafish, HLMs and S9 fraction by quadrupole-orbitrap LC-MS/MS for drug control. J Chromatogr B Analyt Technol Biomed Life Sci. 2025;1250: 124374. https://doi.org/10.1016/j.jchromb.2024.124374.
Article CAS PubMed Google Scholar
Geldof L, Lootens L, Polet M, Eichner D, Campbell T, Nair V, Botrè F, Meuleman P, Leroux-Roels G, Deventer K, Eenoo PV. Metabolism of methylstenbolone studied with human liver microsomes and the uPA⁺/⁺-SCID chimeric mouse model. Biomed Chromatogr. 2014;28(7):974–85. https://doi.org/10.1002/bmc.3105.
Article CAS PubMed Google Scholar
Harding C, Viljanto M, Habershon-Butcher J, Taylor P, Scarth J. Equine metabolism of the selective androgen receptor modulator YK-11 in urine and plasma following oral administration. Drug Test Anal. 2023;15(4):388–407. https://doi.org/10.1002/dta.3425.
Article CAS PubMed Google Scholar
Thevis M, Walpurgis K, Thomas A. Analytical approaches in human sports drug testing: recent advances, challenges, and solutions. Anal Chem. 2020;92(1):506–23. https://doi.org/10.1021/acs.analchem.9b04639.
Article CAS PubMed Google Scholar
Martín-Escudero P, Muñoz-Guerra JA, García-Tenorio SV, Serrano-Garde E, Soldevilla-Navarro AB, Cortes-Carrillo N, Galindo-Canales M, del Prado N, Fuentes-Ferrer M, Fernández-Pérez C, Behnisch PA, Brouwer A. Bioanalytical detection of steroid abuse in sports based on the androgenic activity measurement. Chemosensors. 2021;9(4): 62. https://doi.org/10.3390/chemosensors9040062.
Sun Y, Giacomello G, Girreser U, Steff J, Bureik M, de la Torre X, Botrè F, Parr MK. Characterization and quantitation of a sulfoconjugated metabolite for detection of methyltestosterone misuse and direct identification by LC-MS. J Steroid Biochem Mol Biol. 2024;242: 106527. https://doi.org/10.1016/j.jsbmb.2024.106527.
Article CAS PubMed Google Scholar
Bressan C, Alechaga É, Monfort N, Ventura R. Evaluation of sulfate metabolites as markers of topical testosterone administration in Caucasian and Asian populations. Drug Test Anal. 2024;16(9):903–14. https://doi.org/10.1002/dta.3615.
Article CAS PubMed Google Scholar
Albertsdóttir AD, Van Gansbeke W, Coppieters G, Balgimbekova K, Van Eenoo P, Polet M. Searching for new long-term urinary metabolites of metenolone and drostanolone using gas chromatography-mass spectrometry with a focus on non-hydrolysed sulfates. Drug Test Anal. 2020;12(8):1041–53. https://doi.org/10.1002/dta.2818.
Article CAS PubMed Google Scholar
Sobolevsky T, Rodchenkov G. Mass spectrometric description of novel oxymetholone and desoxymethyltestosterone metabolites identified in human urine and their importance for doping control. Drug Test Anal. 2012;4(9):682–91. https://doi.org/10.1002/dta.1407.
Article CAS PubMed Google Scholar
Zhang J, Lu J, Wu Y, Wang X, Xu Y, Zhang Y, Wang Y. New potential biomarker for methasterone misuse in human urine by liquid chromatography quadrupole time of flight mass spectrometry. Int J Mol Sci. 2016;17(10): 1628. https://doi.org/10.3390/ijms17101628.
Article CAS PubMed PubMed Central Google Scholar
Magalhães W, Garrido B, Cavalcanti G, Padilha M, Casilli A, Pereira H, Radler de Aquino Neto F. Human metabolism of the anabolic steroid methasterone: detection and kinetic excretion of new phase I urinary metabolites and investigation of phase II metabolism by GC-MS and UPLC-MS/MS. J Braz Chem Soc. 2019;30.https://doi.org/10.21577/0103-5053.20190010.
Zheng S, Ge Y, Fang X, Liu M, Sun H, Deng X, Liao L. Multiplex nontargeted framework enables tracking metabolic profile of oxymetholone and methasterone in vivo at nanogram level by GC-Orbitrap-HRMS for antidoping purpose. Anal Chem. 2025;97(5):3009–18. https://doi.org/10.1021/acs.analchem.4c06026.
Article CAS PubMed Google Scholar
Iannone M, Botrè F, Martinez-Brito D, Matteucci R, de la Torre X. Development and application of analytical procedures for the GC-MS/MS analysis of the sulfates metabolites of anabolic androgenic steroids: the pivotal role of chemical hydrolysis. J Chromatogr B Analyt Technol Biomed Life Sci. 2020;1155: 122280. https://doi.org/10.1016/j.jchromb.2020.122280.
Article CAS PubMed Google Scholar
Yang S, Lu J, Xu Y, Wang X. New oxymesterone metabolites in human by gas chromatography-tandem mass spectrometry and their application for doping control. Drug Test Anal. 2016;8(7):633–43. https://doi.org/10.1002/dta.1836.
Article CAS PubMed Google Scholar
Schanzer W, Horning S, Opfermann G, Donike M. Gas chromatography/mass spectometry identification of long-term excreted metabolites of the anabolic steroid 4-chloro-1,2-dehydro-17alpha-methyltestosterone in humans. J Steroid Biochem Mol Biol. 1996;57(5–6):363–76. https://doi.org/10.1016/0960-0760(95)00276-6.
Article CAS PubMed Google Scholar
Polet M, Van Gansbeke W, Geldof L, Deventer K, Van Eenoo P. Identification and characterization of novel long-term metabolites of oxymesterone and mesterolone in human urine by application of selected reaction monitoring GC-CI-MS/MS. Drug Test Anal. 2017;9(11–12):1673–84. https://doi.org/10.1002/dta.2183.
Article CAS PubMed Google Scholar
Muresan AR, Rahaman KA, Rafique FB, Son J, Kang MJ, Kwon OS. Metabolic identification based on proposed mass fragmentation pathways of the anabolic steroid bolasterone by gas chromatography tandem mass spectrometry. Drug Test Anal. 2025. https://doi.org/10.1002/dta.3903.
Steff J, Molaioni F, Schlörer N, de la Torre X, Bureik M, Botrè F, Parr MK. Reduced and rearranged metabolite structures after metandienone administration: new promising metabolites for potential long-term detection. J Steroid Biochem Mol Biol. 2025. https://doi.org/10.1016/j.jsbmb.2025.106801.
Pedersen KW, Hansen J, Hasselstrøm JB, Jornil JR. Stability investigations of cytochrome P450 (CYP) enzymes immediately after death in a pig model support the applicability of postmortem hepatic CYP quantification. Pharmacol Res Perspect. 2021;9(5): e00860. https://doi.org/10.1002/prp2.860.
Article CAS PubMed PubMed Central Google Scholar
Wang H, Brown PC, Chow ECY, Ewart L, Ferguson SS, Fitzpatrick S, Freedman BS, Guo GL, Hedrich W, Heyward S, Hickman J, Isoherranen N, Li AP, Liu Q, Mumenthaler SM, Polli J, Proctor WR, Ribeiro A, Wang J-Y, Wange RL, Huang S-M. 3D cell culture models: drug pharmacokinetics, safety assessment, and regulatory consideration. Clin Transl Sci. 2021;14(5):1659–80.
Article PubMed PubMed Central Google Scholar
Liu L, Hobohm L, Bredendiek F, Froschauer A, Zierau O, Parr MK, Keiler AM. Medaka embryos as a model for metabolism of anabolic steroids. Arch Toxicol. 2022;96(7):1963–74. https://doi.org/10.1007/s00204-022-03284-4.
Article CAS PubMed PubMed Central Google Scholar
Görgens C, Ramme AP, Guddat S, Schrader Y, Winter A, Dehne EM, Horland R, Thevis M. Organ-on-a-chip: determine feasibility of a human liver microphysiological model to assess long-term steroid metabolites in sports drug testing. Drug Test Anal. 2021;13(11–12):1921–8. https://doi.org/10.1002/dta.3161.
Comments (0)