Guillevin L. Treatment of systemic necrotizing vasculitides: the 40-year experience of the French Vasculitis Study Group. Presse Med. 2020;49: 104034.
Stone JH, et al. Rituximab versus cyclophosphamide for ANCA-associated vasculitis. N Engl J Med. 2010;363:221–32.
CAS PubMed PubMed Central Google Scholar
Watts RA, et al. Classification, epidemiology and clinical subgrouping of antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis. Nephrol Dial Transplant. 2015;30(Suppl 1):i14-22.
Jayne DRW, Merkel PA, Schall TJ, Bekker P. Avacopan for the treatment of ANCA-associated vasculitis. N Engl J Med. 2021;384:599–609.
Berti A, Dejaco C. Update on the epidemiology, risk factors, and outcomes of systemic vasculitides. Best Pract Res Clin Rheumatol. 2018;32:271–94.
Berti A, Cornec D, Crowson CS, Specks U, Matteson EL. The epidemiology of antineutrophil cytoplasmic autoantibody-associated vasculitis in olmsted county, minnesota: a twenty-year US population-based study. Arthritis Rheumatol. 2017;69:2338–50.
CAS PubMed PubMed Central Google Scholar
Mohammad AJ. An update on the epidemiology of ANCA-associated vasculitis. Rheumatology (Oxford). 2020;59:iii42–50.
Redondo-Rodriguez R, et al. Systematic review and metaanalysis of worldwide incidence and prevalence of antineutrophil cytoplasmic antibody (ANCA) associated vasculitis. J Clin Med. 2022;11:2573.
PubMed PubMed Central Google Scholar
Rathmann J, Jayne D, Segelmark M, Jönsson G, Mohammad AJ. Incidence and predictors of severe infections in ANCA-associated vasculitis: a population-based cohort study. Rheumatology (Oxford). 2021;60:2745–54.
Bataille PM, et al. Epidemiology of granulomatosis with polyangiitis and microscopic polyangiitis in adults in France. J Autoimmun. 2022;133: 102910.
Pearce FA, et al. Incidence of ANCA-associated vasculitis in a UK mixed ethnicity population. Rheumatology (Oxford). 2016;55:1656–63.
Franceschi C, Garagnani P, Vitale G, Capri M, Salvioli S. Inflammaging and ‘Garb-aging.’ Trends Endocrinol Metab. 2017;28:199–212.
López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013;153:1194–217.
PubMed PubMed Central Google Scholar
Gorgoulis V, et al. Cellular senescence: defining a path forward. Cell. 2019;179:813–27.
Panda A, et al. Age-associated decrease in TLR function in primary human dendritic cells predicts influenza vaccine response. J Immunol. 2010;184:2518–27.
Plowden J, et al. Impaired antigen-induced CD8+ T cell clonal expansion in aging is due to defects in antigen presenting cell function. Cell Immunol. 2004;229:86–92.
van Duin D, et al. Age-associated defect in human TLR-1/2 function. J Immunol. 2007;178:970–5.
Metcalf TU, et al. Human monocyte subsets are transcriptionally and functionally altered in aging in response to pattern recognition receptor agonists. J Immunol. 2017;199:1405–17.
Puchta A, et al. TNF drives monocyte dysfunction with age and results in impaired anti-pneumococcal immunity. PLoS Pathog. 2016;12: e1005368.
PubMed PubMed Central Google Scholar
Campos C, et al. Effect of age and CMV on NK cell subpopulations. Exp Gerontol. 2014;54:130–7.
Hazeldine J, Lord JM. Innate immunesenescence: underlying mechanisms and clinical relevance. Biogerontology. 2015;16:187–201.
Montgomery RR, Shaw AC. Paradoxical changes in innate immunity in aging: recent progress and new directions. J Leukoc Biol. 2015;98:937–43.
CAS PubMed PubMed Central Google Scholar
Gaya da Costa M, et al. Age and sex-associated changes of complement activity and complement levels in a healthy Caucasian population. Front Immunol. 2018. https://doi.org/10.3389/fimmu.2018.02664.
PubMed PubMed Central Google Scholar
Zheng R, et al. The complement system, aging, and aging-related diseases. Int J Mol Sci. 2022;23:8689.
CAS PubMed PubMed Central Google Scholar
Kimoto Y, Horiuchi T. The complement system and ANCA associated vasculitis in the era of anti-complement drugs. Front Immunol. 2022. https://doi.org/10.3389/fimmu.2022.926044.
PubMed PubMed Central Google Scholar
Merkel PA, Pfaff A, Müller C, Startseva E & Jayne DR. A randomized, double-blind, phase II study of glucocorticoid replacement by vilobelimab, an anti-C5a monoclonal antibody, in ANCA-associated vasculitis. ACR Meeting Abstracts (2022).
Frasca D, Diaz A, Romero M, Garcia D, Blomberg BB. B Cell Immunosenescence. Annu Rev Cell Dev Biol. 2020;36:551–74.
CAS PubMed PubMed Central Google Scholar
Naylor K, Li G, Vallejo AN, et al. The influence of age on T cell generation and TCR diversity. J Immunol. 2005;174(11):7446–52. https://doi.org/10.4049/jimmunol.174.11.7446.
Aw D, Silva AB, Palmer DB. Immunosenescence: emerging challenges for an ageing population. Immunology. 2007;120:435–46.
CAS PubMed PubMed Central Google Scholar
Pulko V, et al. Human memory T cells with a naive phenotype accumulate with aging and respond to persistent viruses. Nat Immunol. 2016;17:966–75.
CAS PubMed PubMed Central Google Scholar
Pangrazzi L, Weinberger B. T cells, aging and senescence. Exp Gerontol. 2020;134: 110887.
Vallejo AN. CD28 extinction in human T cells: altered functions and the program of T-cell senescence. Immunol Rev. 2005;205:158–69.
Song R, Jia X, Zhao J, Du P, Zhang J-A. T cell receptor revision and immune repertoire changes in autoimmune diseases. Int Rev Immunol. 2022;41:517–33.
Abdulahad WH, Stegeman CA, Limburg PC, Kallenberg CGM. Skewed distribution of Th17 lymphocytes in patients with Wegener’s granulomatosis in remission. Arthritis Rheum. 2008;58:2196–205.
Schlesier M, Kaspar T, Gutfleisch J, Wolff-Vorbeck G, Peter HH. Activated CD4+ and CD8+ T-cell subsets in Wegener’s granulomatosis. Rheumatol Int. 1995;14:213–9.
Moosig F, Csernok E, Wang G, Gross WL. Costimulatory molecules in Wegener’s granulomatosis (WG): lack of expression of CD28 and preferential up-regulation of its ligands B7–1 (CD80) and B7–2 (CD86) on T cells. Clin Exp Immunol. 1998;114:113–8.
CAS PubMed PubMed Central Google Scholar
Lamprecht P, et al. CD28 negative T cells are enriched in granulomatous lesions of the respiratory tract in Wegener’s granulomatosis. Thorax. 2001;56:751–7.
CAS PubMed PubMed Central Google Scholar
Kogut I, Scholz JL, Cancro MP, Cambier JC. B cell maintenance and function in aging. Semin Immunol. 2012;24:342–9.
Re Y, Ce G, Cm W & Jj G. Lymphocyte generation and population homeostasis throughout life. Seminars Hematol. 2017;54.
Stephan RP, Reilly CR, Witte PL. Impaired ability of bone marrow stromal cells to support B-lymphopoiesis with age. Blood. 1998;91:75–88.
Geiger H, Rudolph KL. Aging in the lympho-hematopoietic stem cell compartment. Trends Immunol. 2009;30:360–5.
Simon Q, et al. In-depth characterization of CD24(high)CD38(high) transitional human B cells reveals different regulatory profiles. J Allergy Clin Immunol. 2016;137:1577–84 (e10).
Comments (0)