Pilocarpine in the Treatment of Presbyopia: Progress, Issues, and Future Prospects

Goertz AD, Stewart WC, Burns WR, et al. Review of the impact of presbyopia on quality of life in the developing and developed world. Acta Ophthalmol. 2014;92:497–500. https://doi.org/10.1111/aos.12308.

Article  PubMed  Google Scholar 

Radhakrishnan H, Charman WN. Age-related changes in static accommodation and accommodative miosis. Ophthalmic Physiol Opt. 2007;27:342–52. https://doi.org/10.1111/j.1475-1313.2007.00484.x.

Article  PubMed  Google Scholar 

Fricke TR, Tahhan N, Resnikoff S, et al. Global prevalence of presbyopia and vision impairment from uncorrected presbyopia: systematic review, meta-analysis, and modelling. Ophthalmology. 2018;125:1492–9. https://doi.org/10.1016/j.ophtha.2018.04.013.

Article  PubMed  Google Scholar 

Orman B, Benozzi G. Overview of pharmacological treatments for presbyopia. Med Hypothesis Discov Innov Optom. 2021;1:67–77. https://doi.org/10.51329/mehdioptometry110.

Article  Google Scholar 

McDonald MB, Mychajlyszyn A, Mychajlyszyn D, Klyce SD. Advances in corneal surgical and pharmacological approaches to the treatment of presbyopia. J Refract Surg. 2021;37:20–7. https://doi.org/10.3928/1081597x-20210408-04.

Article  Google Scholar 

Montes-Mico R, Charman WN. Pharmacological strategies for presbyopia correction. J Refract Surg. 2019;35:803–14. https://doi.org/10.3928/1081597X-20191010-04.

Article  PubMed  Google Scholar 

Katz JA, Karpecki PM, Dorca A, et al. Presbyopia: a review of current treatment options and emerging therapies. Clin Ophthalmol. 2021;15:2167–78. https://doi.org/10.2147/OPTH.S259011.

Article  PubMed  PubMed Central  Google Scholar 

Westheimer G. Topical review: pilocarpine-induced miosis as help for early presbyopes? Optom Vis Sci. 2022;99:632–4. https://doi.org/10.1097/OPX.0000000000001924.

Article  PubMed  Google Scholar 

Meghpara BB, Lee JK, Rapuano CJ, et al. Pilocarpine 1.25% and the changing landscape of presbyopia treatment. Curr Opin Ophthalmol. 2022;33:269–74. https://doi.org/10.1097/ICU.0000000000000864.

Article  PubMed  Google Scholar 

Orman B, Benozzi G. Pharmacological treatments for presbyopia. Drugs Aging. 2023;40:105–16. https://doi.org/10.1007/s40266-022-01002-4.

Article  PubMed  Google Scholar 

Wolffsohn JS, Davies LN. Presbyopia: effectiveness of correction strategies. Prog Retin Eye Res. 2019;68:124–43. https://doi.org/10.1016/j.preteyeres.2018.09.004.

Article  PubMed  Google Scholar 

Park SY, Choi YJ, Jung JW, et al. Clinical efficacy of pinhole soft contact lenses for the correction of presbyopia. Semin Ophthalmol. 2019;34:106–14. https://doi.org/10.1080/08820538.2019.1586966.

Article  PubMed  Google Scholar 

Dexl AK, Seyeddain O, Riha W, et al. Reading performance after implantation of a small-aperture corneal inlay for the surgical correction of presbyopia: two-year follow-up. J Cataract Refract Surg. 2011;37:525–31. https://doi.org/10.1016/j.jcrs.2010.10.044.

Article  PubMed  Google Scholar 

McDougal DH, Gamlin PD. Autonomic control of the eye. Compr Physiol. 2015;5:439–73. https://doi.org/10.1002/cphy.c140014.

Article  PubMed  PubMed Central  Google Scholar 

Waring GOT, Price FW Jr, Wirta D, et al. Safety and efficacy of AGN-190584 in individuals with presbyopia: the GEMINI 1 phase 3 randomized clinical trial. JAMA Ophthalmol. 2022;140:363–71. https://doi.org/10.1001/jamaophthalmol.2022.0059.

Article  PubMed  PubMed Central  Google Scholar 

Lievens CW, Hom MM, McLaurin EB, et al. Pilocarpine HCl 1.25% for treatment of presbyopia after laser vision correction: pooled analysis of two phase 3 randomized trials (GEMINI 1 and 2). J Cataract Refract Surg. 2024;50:57–63. https://doi.org/10.1097/j.jcrs.0000000000001313.

Article  PubMed  Google Scholar 

Waring GOT, Brujic M, McGee S, et al. Impact of presbyopia treatment pilocarpine hydrochloride 1.25% on night-driving performance. Clin Exp Optom. 2024;107:665–72. https://doi.org/10.1080/08164622.2023.2279189.

Article  PubMed  Google Scholar 

Kannarr S, El-Harazi SM, Moshirfar M, et al. Safety and efficacy of twice-daily pilocarpine HCl in presbyopia: the Virgo phase 3, randomized, double-masked, controlled study. Am J Ophthalmol. 2023;253:189–200. https://doi.org/10.1016/j.ajo.2023.05.008.

Article  CAS  PubMed  Google Scholar 

Shafer BM, McGee SR, Ifantides C, et al. Understanding perspectives on presbyopia and use of pilocarpine HCl 1.25% twice daily from participants of the phase 3 VIRGO Study. Ophthalmol Ther. 2024;13:1723–42. https://doi.org/10.1007/s40123-024-00935-w.

Article  PubMed  PubMed Central  Google Scholar 

Socea S, Mimouni M, Andreja V, Blumenthal EZ. Drops for presbyopia: results of CSF-1, a multicenter randomized double-masked placebo-controlled crossover study. Invest Ophth Vis Sci. 2019;60.

Holland E, Karpecki P, Fingeret M, et al. Efficacy and safety of CSF-1 (0.4% pilocarpine hydrochloride) in presbyopia: pooled results of the NEAR phase 3 randomized, clinical trials. Clin Ther. 2024;46:104–13. https://doi.org/10.1016/j.clinthera.2023.12.005.

Article  CAS  PubMed  Google Scholar 

Petkar S, Chaitra MC. Correction of presbyopia using 0.5% pilocarpine eye drops among Indians. Bioinformation. 2024;20:532–6. https://doi.org/10.6026/973206300200532.

Article  PubMed  PubMed Central  Google Scholar 

Price FW Jr, Hom M, Moshirfar M, et al. Combinations of pilocarpine and oxymetazoline for the pharmacological treatment of presbyopia: two randomized phase 2 studies. Ophthalmol Sci. 2021;1: 100065. https://doi.org/10.1016/j.xops.2021.100065.

Article  PubMed  PubMed Central  Google Scholar 

Yu Y, Kawarai M, Koss MC. Histamine H3 receptor-mediated inhibition of sympathetically evoked mydriasis in rats. Eur J Pharmacol. 2001;419:55–9.

Article  CAS  PubMed  Google Scholar 

Greiner JV, Udell IJ. A comparison of the clinical efficacy of pheniramine maleate/naphazoline hydrochloride ophthalmic solution and olopatadine hydrochloride ophthalmic solution in the conjunctival allergen challenge model. Clin Ther. 2005;27:568–77. https://doi.org/10.1016/j.clinthera.2005.04.011.

Article  CAS  PubMed  Google Scholar 

Sarkar S, Hasnat AM, Bharadwaj SR. Revisiting the impact of phenylephrine hydrochloride on static and dynamic accommodation. Indian J Ophthalmol. 2012;60:503–9. https://doi.org/10.4103/0301-4738.103773.

Article  PubMed  PubMed Central  Google Scholar 

Renna A, Vejarano LF, De la Cruz E, Alio JL. Pharmacological treatment of presbyopia by novel binocularly instilled eye drops: a pilot study. Ophthalmol Ther. 2016;5:63–73. https://doi.org/10.1007/s40123-016-0050-x.

Article  PubMed  PubMed Central  Google Scholar 

Vargas V, Vejarano F, Alió JL. Near vision improvement with the use of a new topical compound for presbyopia correction: a prospective, consecutive interventional non-comparative clinical study. Ophthalmol Ther. 2019;8:31–9. https://doi.org/10.1007/s40123-018-0154-6.

Article  PubMed  Google Scholar 

Vejarano F, Alio J, Iribarren R, Lanca C. Non-miotic improvement in binocular near vision with a topical compound formula for presbyopia correction. Ophthalmol Ther. 2023;12:1013–24. https://doi.org/10.1007/s40123-023-00648-6.

Article  PubMed  PubMed Central  Google Scholar 

Zimmerman TJ, Wheeler TM. Miotics: side effects and ways to avoid them. Ophthalmology. 1982;89:76–80. https://doi.org/10.1016/s0161-6420(82)34866-6.

Article  CAS  PubMed  Google Scholar 

Ostrin LA, Glasser A. Effects of pharmacologically manipulated amplitude and starting point on Edinger-Westphal-stimulated accommodative dynamics in rhesus monkeys. Invest Ophthalmol Vis Sci. 2007;48:313–20. https://doi.org/10.1167/iovs.06-0380.

Article  PubMed  Google Scholar 

Comments (0)

No login
gif